Theil-Sen nonparametric regression technique on univariate calibration, inverse regression and detection limits

被引:46
|
作者
Lavagnini, Irma [1 ]
Badocco, Denis [1 ]
Pastore, Paolo [1 ]
Magno, Franco [1 ]
机构
[1] Univ Padua, Dept Chem Sci, I-35131 Padua, Italy
关键词
Theil-Sen regression; Nonparametric confidence region; Tolerance intervals; Detection limit; LINEAR-REGRESSION; 3-MERCAPTOHEXYL ACETATE; ROBUST; INTERVALS; ERRORS; MODEL; WINE;
D O I
10.1016/j.talanta.2011.09.059
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This paper reports the combined use of the nonparametric Theil-Sen (TS) regression technique and of the statistics of Lancaster-Quade (LQ) concerning the linear regression parameters to solve typical analytical problems, like method comparison, calculation of the uncertainty in the inverse regression, determination of the detection limit. The results of this new approach are compared to those obtained with appropriate reference methods, using simulated and real data sets. The nonparametric Theil-Sen regression technique appears a new robust tool for the problems considered because it is free from restrictive statistical constraints, avoids searching for the error nature on x and y, which may require long analysis times, and it is easy to use. The only drawback is that the intrinsic nature of the method may lead to a possible enlargement of the uncertainty interval of the discriminated concentration and to the determination of larger detection limits than those obtainable with the commonly used, less robust, regression techniques. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:180 / 188
页数:9
相关论文
共 50 条
  • [41] Fuzzy nonparametric regression based on local linear smoothing technique
    Wang, Ning
    Zhang, Wen-Xiu
    Mei, Chang-Lin
    [J]. INFORMATION SCIENCES, 2007, 177 (18) : 3882 - 3900
  • [42] Handling covariates subject to limits of detection in regression
    Arunajadai, Srikesh G.
    Rauh, Virginia A.
    [J]. ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2012, 19 (03) : 369 - 391
  • [43] Quickest Detection of Parameter Changes in Stochastic Regression: Nonparametric CUSUM
    Konev, Victor
    Vorobeychikov, Sergey
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (09) : 5588 - 5602
  • [44] Asymptotic equivalence of nonparametric regression and white noise model has its limits
    Efromovich, S
    Samarov, A
    [J]. STATISTICS & PROBABILITY LETTERS, 1996, 28 (02) : 143 - 145
  • [45] NONPARAMETRIC REGRESSION-ANALYSIS METHODS APPLIED TO PROCESSING OF AERODYNAMIC BALANCE CALIBRATION
    VASENIN, VA
    MAKAROV, AA
    [J]. VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1992, (01): : 58 - 64
  • [46] A local polynomial jump-detection algorithm in nonparametric regression
    Qiu, PH
    Yandell, B
    [J]. TECHNOMETRICS, 1998, 40 (02) : 141 - 152
  • [47] Curve fitting and jump detection on nonparametric regression with missing data
    Li, Qianyi
    Li, Jianbo
    Cheng, Yongran
    Zhang, Riquan
    [J]. JOURNAL OF APPLIED STATISTICS, 2023, 50 (04) : 963 - 983
  • [48] On the calibration process of film dosimetry: OLS inverse regression versus WLS inverse prediction
    Crop, F.
    Van Rompaye, B.
    Paelinck, L.
    Vakaet, L.
    Thierens, H.
    De Wagter, C.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2008, 53 (14): : 3971 - 3984
  • [49] Nonparametric regression with nonignorable missing covariates and outcomes using bounded inverse weighting
    Tan, Ruoxu
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2023, 35 (04) : 927 - 946
  • [50] A Technique for Rapid Selection of Blur Coefficients for Kernel Functions in Nonparametric Regression
    A. V. Lapko
    V. A. Lapko
    [J]. Measurement Techniques, 2022, 65 : 557 - 563