Theil-Sen nonparametric regression technique on univariate calibration, inverse regression and detection limits

被引:46
|
作者
Lavagnini, Irma [1 ]
Badocco, Denis [1 ]
Pastore, Paolo [1 ]
Magno, Franco [1 ]
机构
[1] Univ Padua, Dept Chem Sci, I-35131 Padua, Italy
关键词
Theil-Sen regression; Nonparametric confidence region; Tolerance intervals; Detection limit; LINEAR-REGRESSION; 3-MERCAPTOHEXYL ACETATE; ROBUST; INTERVALS; ERRORS; MODEL; WINE;
D O I
10.1016/j.talanta.2011.09.059
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This paper reports the combined use of the nonparametric Theil-Sen (TS) regression technique and of the statistics of Lancaster-Quade (LQ) concerning the linear regression parameters to solve typical analytical problems, like method comparison, calculation of the uncertainty in the inverse regression, determination of the detection limit. The results of this new approach are compared to those obtained with appropriate reference methods, using simulated and real data sets. The nonparametric Theil-Sen regression technique appears a new robust tool for the problems considered because it is free from restrictive statistical constraints, avoids searching for the error nature on x and y, which may require long analysis times, and it is easy to use. The only drawback is that the intrinsic nature of the method may lead to a possible enlargement of the uncertainty interval of the discriminated concentration and to the determination of larger detection limits than those obtainable with the commonly used, less robust, regression techniques. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:180 / 188
页数:9
相关论文
共 50 条
  • [31] Minimax Analysis for Inverse Risk in Nonparametric Planer Invertible Regression
    Okuno, Akifumi
    Imaizumi, Masaaki
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2024, 18 (01): : 355 - 394
  • [32] A nonparametric Bayesian technique for high-dimensional regression
    Guha, Subharup
    Baladandayuthapani, Veerabhadran
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2016, 10 (02): : 3374 - 3424
  • [33] DETERMINATION OF LIMITS FOR A LINEAR-REGRESSION OR CALIBRATION CURVE
    SWALLOW, WH
    TROUT, JR
    [J]. JOURNAL OF QUALITY TECHNOLOGY, 1983, 15 (03) : 118 - 125
  • [34] MODIFIED CLASSICAL AND INVERSE REGRESSION-ESTIMATORS IN CALIBRATION
    DAHIYA, RC
    MCKEON, JJ
    [J]. SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES B, 1991, 53 : 48 - 55
  • [35] Detection of Interaction Effects in a Nonparametric Concurrent Regression Model
    Pan, Rui
    Wang, Zhanfeng
    Wu, Yaohua
    [J]. ENTROPY, 2023, 25 (09)
  • [36] Pattern Fabric Defect Detection Using Nonparametric Regression
    Halim, S.
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2015, 53 (06): : 223 - 229
  • [37] Model-calibration estimation of the distribution function using nonparametric regression
    Rueda, M.
    Sanchez-Borrego, I.
    Arcos, A.
    Martinez, S.
    [J]. METRIKA, 2010, 71 (01) : 33 - 44
  • [38] Model-calibration estimation of the distribution function using nonparametric regression
    M. Rueda
    I. Sánchez-Borrego
    A. Arcos
    S. Martínez
    [J]. Metrika, 2010, 71 : 33 - 44
  • [39] Handling covariates subject to limits of detection in regression
    Srikesh G. Arunajadai
    Virginia A. Rauh
    [J]. Environmental and Ecological Statistics, 2012, 19 : 369 - 391
  • [40] Limits of detection in linear regression with errors in the concentration
    Bocio, FJD
    Riu, J
    Boqué, R
    Rius, FX
    [J]. JOURNAL OF CHEMOMETRICS, 2003, 17 (07) : 413 - 421