Outlier Detection and Robust Estimation in Nonparametric Regression

被引:0
|
作者
Kong, Dehan [1 ]
Bondell, Howard [2 ]
Shen, Weining [3 ]
机构
[1] Univ Toronto, Toronto, ON, Canada
[2] Univ Melbourne, Melbourne, Vic, Australia
[3] Univ Calif Irvine, Irvine, CA USA
关键词
VARIABLE SELECTION; LEAST-SQUARES; MODEL;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper studies outlier detection and robust estimation for nonparametric regression problems. We propose to include a subject-specific mean shift parameter for each data point such that a nonzero parameter will identify its corresponding data point as an outlier. We adopt a regularization approach by imposing a roughness penalty on the regression function and a shrinkage penalty on the mean shift parameter. An efficient algorithm has been proposed to solve the double penalized regression problem. We discuss a data-driven simultaneous choice of two regularization parameters based on a combination of generalized cross validation and modified Bayesian information criterion. We show that the proposed method can consistently detect the outliers. In addition, we obtain minimax-optimal convergence rates for both the regression function and the mean shift parameter under regularity conditions. The estimation procedure is shown to enjoy the oracle property in the sense that the convergence rates agree with the minimax-optimal rates when the outliers (or regression function) are known in advance. Numerical results demonstrate that the proposed method has desired performance in identifying outliers under different scenarios.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Efficient and robust estimation of regression and scale parameters, with outlier detection
    Desgagne, Alain
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2021, 155
  • [2] Robust estimation and outlier detection based on linear regression model
    Cui, Le
    Cheng, Libo
    Jiang, Xiaoming
    Chen, Zhanfang
    Albarka
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 37 (04) : 4657 - 4664
  • [3] ROBUST NONPARAMETRIC REGRESSION ESTIMATION
    BOENTE, G
    FRAIMAN, R
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 1989, 29 (02) : 180 - 198
  • [4] Robust nonparametric bicoherence estimation by stepwise outlier rejection
    Fackrell, JWA
    McLaughlin, S
    [J]. ELECTRONICS LETTERS, 2000, 36 (04) : 368 - 370
  • [5] Robust Functional Regression for Outlier Detection
    Hullait, Harjit
    Leslie, David S.
    Pavlidis, Nicos G.
    King, Steve
    [J]. ADVANCED ANALYTICS AND LEARNING ON TEMPORAL DATA, AALTD 2019, 2020, 11986 : 3 - 13
  • [6] OUTLIER DETECTION BY ROBUST ALTERNATING REGRESSION
    UKKELBERG, A
    BORGEN, OS
    [J]. ANALYTICA CHIMICA ACTA, 1993, 277 (02) : 489 - 494
  • [7] Robust nonparametric estimation for spatial regression
    Gheriballah, Abdelkader
    Laksaci, Ali
    Rouane, Rachida
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (07) : 1656 - 1670
  • [8] Robust estimation for nonparametric generalized regression
    Bianco, Ana M.
    Boente, Graciela
    Sombielle, Susana
    [J]. STATISTICS & PROBABILITY LETTERS, 2011, 81 (12) : 1986 - 1994
  • [9] Outlier detection and robust estimation in linear regression models with fixed group effects
    Perez, Betsabe
    Molina, Isabel
    Pena, Daniel
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2014, 84 (12) : 2652 - 2669
  • [10] Robust outlier detection using SVM regression
    Jordaan, EM
    Smits, GF
    [J]. 2004 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2004, : 2017 - 2022