REMARKS ON SUB-FRACTIONAL BESSEL PROCESSES

被引:0
|
作者
Shen Guangjun [1 ,2 ]
Chen Chao [1 ]
Yam Litan [3 ]
机构
[1] E China Univ Sci & Technol, Dept Math, Shanghai 200237, Peoples R China
[2] Anhui Normal Univ, Dept Math, Wuhu 241000, Peoples R China
[3] Donghua Univ, Dept Math, Shanghai 201620, Peoples R China
关键词
sub-fractional Brownian motion; Malliavin calculus; sub-fractional Bessel processes; chaos expansion; BROWNIAN-MOTION; RESPECT; TIME;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S = {(S-t(1), ..., S-t(d))}t >= 0 denote a d-dimensional sub-fractional Brownian motion with index H >= 1/2. In this paper we study some properties of the process X of the form X-t :=Sigma(d)(i=1) integral(t)(0) S-s(i)/R(s)dS(s)(i), d >= 1, where R-t = root(s(t)(1))(2) + ... + (s(t)(d))(2) is the sub-fractional Bessel process.
引用
收藏
页码:1860 / 1876
页数:17
相关论文
共 50 条
  • [31] Estimating Drift Parameters in a Sub-Fractional Vasicek-Type Process
    Khalaf, Anas D.
    Saeed, Tareq
    Abu-Shanab, Reman
    Almutiry, Waleed
    Abouagwa, Mahmoud
    ENTROPY, 2022, 24 (05)
  • [32] The generalized Bouleau-Yor identity for a sub-fractional Brownian motion
    YAN LiTan
    HE Kun
    CHEN Chao
    Science China Mathematics, 2013, 56 (10) : 2089 - 2116
  • [33] Asymptotic behavior of weighted cubic variation of sub-fractional brownian motion
    Kuang, Nenghui
    Xie, Huantian
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (01) : 215 - 229
  • [34] The generalized Bouleau-Yor identity for a sub-fractional Brownian motion
    LiTan Yan
    Kun He
    Chao Chen
    Science China Mathematics, 2013, 56 : 2089 - 2116
  • [35] Parameter estimations for the sub-fractional Brownian motion with drift at discrete observation
    Kuang, Nenghui
    Liu, Bingquan
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2015, 29 (04) : 778 - 789
  • [36] Stochastic delay evolution equations driven by sub-fractional Brownian motion
    Li, Zhi
    Zhou, Guoli
    Luo, Jiaowan
    ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [37] Some extensions of fractional Brownian motion and sub-fractional Brownian motion related to particle systems
    Bojdecki, Tomasz
    Gorostiza, Luis G.
    Talarczyk, Anna
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2007, 12 : 161 - 172
  • [38] STOCHASTIC INTEGRAL FOR NON-ADAPTED PROCESSES RELATED TO SUB-FRACTIONAL BROWNIAN MOTION WHEN H > 1/2
    Amel, Belhadj
    Abdeldjebbar, Kandouci
    Angelika, Bouchentouf Amina
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2021, 16 (02): : 165 - 176
  • [39] Effect of Manufacturing Influences on Magnetic Performance Parameters of Sub-Fractional Horsepower Motors
    Leitner, Stefan
    Gruebler, Hannes
    Muetze, Annette
    IEEE TRANSACTIONS ON MAGNETICS, 2021, 57 (12)
  • [40] PCB motors for sub-fractional HP auxiliary fan drives: a feasibility study
    Auer, David
    Leitner, Stefan
    Muetze, Annette
    ELEKTROTECHNIK UND INFORMATIONSTECHNIK, 2022, 139 (02): : 139 - 148