Parameter estimations for the sub-fractional Brownian motion with drift at discrete observation

被引:16
|
作者
Kuang, Nenghui [1 ,3 ]
Liu, Bingquan [2 ]
机构
[1] Hunan Univ Sci & Technol, Sch Math & Comp Sci, Xiangtan 411201, Hunan, Peoples R China
[2] Weinan Normal Univ, Sch Math & Informat Sci, Weinan 714000, Peoples R China
[3] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Maximum likelihood estimator; sub-fractional Brownian motion; Stein's method; Malliavin calculus; MALLIAVIN CALCULUS; TIME-SERIES;
D O I
10.1214/14-BJPS246
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we investigate the L-2-consistency and the strong consistency of the maximum likelihood estimators (MLE) of the mean and variance of the sub-fractional Brownian motion with drift at discrete observation. By combining the Stein's method with Malliavin calculus, we obtain the central limit theorem and the Berry-Esseen bounds for these estimators.
引用
收藏
页码:778 / 789
页数:12
相关论文
共 50 条
  • [1] A DECOMPOSITION OF SUB-FRACTIONAL BROWNIAN MOTION
    Ruiz de Chavez, J.
    Tudor, C.
    MATHEMATICAL REPORTS, 2009, 11 (01): : 67 - 74
  • [2] AN EXTENSION OF SUB-FRACTIONAL BROWNIAN MOTION
    Sghir, Aissa
    PUBLICACIONS MATEMATIQUES, 2013, 57 (02) : 497 - 508
  • [3] On the simulation of sub-fractional Brownian motion
    Morozewicz, Aneta
    Filatova, Darya
    2015 20TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2015, : 400 - 405
  • [4] The Lower Classes of the Sub-Fractional Brownian Motion
    El-Nouty, Charles
    STOCHASTIC DIFFERENTIAL EQUATIONS AND PROCESSES, 2012, 7 : 179 - 196
  • [5] The incre ents of a sub-fractional Brownian motion
    El-Nouty, Charles
    2016 INTERNATIONAL CONFERENCE ON INFORMATION AND DIGITAL TECHNOLOGIES (IDT), 2016, : 95 - 100
  • [6] Instrumental variable estimation for stochastic differential equations linear in drift parameter and driven by a sub-fractional Brownian motion
    Rao, B. L. S. Prakasa
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2018, 36 (04) : 600 - 612
  • [7] Mixed Sub-fractional Brownian Motion and Drift Estimation of Related Ornstein–Uhlenbeck Process
    Chunhao Cai
    Qinghua Wang
    Weilin Xiao
    Communications in Mathematics and Statistics, 2023, 11 : 229 - 255
  • [8] Some extensions of fractional Brownian motion and sub-fractional Brownian motion related to particle systems
    Bojdecki, Tomasz
    Gorostiza, Luis G.
    Talarczyk, Anna
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2007, 12 : 161 - 172
  • [9] More on maximal inequalities for sub-fractional Brownian motion
    Rao, B. L. S. Prakasa
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2020, 38 (02) : 238 - 247
  • [10] European Option Pricing under Sub-Fractional Brownian Motion Regime in Discrete Time
    Guo, Zhidong
    Liu, Yang
    Dai, Linsong
    FRACTAL AND FRACTIONAL, 2024, 8 (01)