Parameter estimations for the sub-fractional Brownian motion with drift at discrete observation

被引:16
|
作者
Kuang, Nenghui [1 ,3 ]
Liu, Bingquan [2 ]
机构
[1] Hunan Univ Sci & Technol, Sch Math & Comp Sci, Xiangtan 411201, Hunan, Peoples R China
[2] Weinan Normal Univ, Sch Math & Informat Sci, Weinan 714000, Peoples R China
[3] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Maximum likelihood estimator; sub-fractional Brownian motion; Stein's method; Malliavin calculus; MALLIAVIN CALCULUS; TIME-SERIES;
D O I
10.1214/14-BJPS246
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we investigate the L-2-consistency and the strong consistency of the maximum likelihood estimators (MLE) of the mean and variance of the sub-fractional Brownian motion with drift at discrete observation. By combining the Stein's method with Malliavin calculus, we obtain the central limit theorem and the Berry-Esseen bounds for these estimators.
引用
收藏
页码:778 / 789
页数:12
相关论文
共 50 条
  • [21] Mixed sub-fractional Brownian motionD
    Zili, Mounir
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2014, 22 (03) : 163 - 178
  • [22] The generalized Bouleau-Yor identity for a sub-fractional Brownian motion
    Yan LiTan
    He Kun
    Chen Chao
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (10) : 2089 - 2116
  • [23] Variations and estimators for self-similarity parameter of sub-fractional Brownian motion via Malliavin calculus
    Liu, Junfeng
    Tang, Donglei
    Cang, Yuquan
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (07) : 3276 - 3289
  • [24] The generalized Bouleau-Yor identity for a sub-fractional Brownian motion
    YAN LiTan
    HE Kun
    CHEN Chao
    ScienceChina(Mathematics), 2013, 56 (10) : 2089 - 2116
  • [25] The generalized Bouleau-Yor identity for a sub-fractional Brownian motion
    LiTan Yan
    Kun He
    Chao Chen
    Science China Mathematics, 2013, 56 : 2089 - 2116
  • [26] Asymptotic behavior of weighted cubic variation of sub-fractional brownian motion
    Kuang, Nenghui
    Xie, Huantian
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (01) : 215 - 229
  • [27] Stochastic delay evolution equations driven by sub-fractional Brownian motion
    Zhi Li
    Guoli Zhou
    Jiaowan Luo
    Advances in Difference Equations, 2015
  • [28] Stochastic delay evolution equations driven by sub-fractional Brownian motion
    Li, Zhi
    Zhou, Guoli
    Luo, Jiaowan
    ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [29] On drift parameter estimation in models with fractional Brownian motion
    Kozachenko, Y.
    Melnikov, A.
    Mishura, Y.
    STATISTICS, 2015, 49 (01) : 35 - 62
  • [30] Statistical inference on the drift parameter in fractional Brownian motion with a deterministic drift
    Stiburek, David
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (02) : 892 - 905