Variations and estimators for self-similarity parameter of sub-fractional Brownian motion via Malliavin calculus

被引:3
|
作者
Liu, Junfeng [1 ]
Tang, Donglei [2 ]
Cang, Yuquan [1 ]
机构
[1] Nanjing Audit Univ, Dept Stat, Nanjing, Jiangsu, Peoples R China
[2] Nanjing Audit Univ, Dept Math, Nanjing, Jiangsu, Peoples R China
基金
中国博士后科学基金;
关键词
Subfractional Brownian motion; multiple stochastic integral; Malliavin calculus; quadratic variation; selfsimilarity; statistical estimation; MULTIPLE STOCHASTIC INTEGRALS; CENTRAL LIMIT-THEOREMS; RESPECT; SYSTEMS; TIME;
D O I
10.1080/03610926.2013.819923
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Using multiple stochastic integrals and the Malliavin calculus, we analyze the asymptotic behavior of the adjusted quadratic variation for a sub-fractional Brownian motion. We apply our results to construct strongly consistent statistical estimators for the self-similarity of sub-fractional Brownian motion.
引用
收藏
页码:3276 / 3289
页数:14
相关论文
共 50 条
  • [1] VARIATIONS AND ESTIMATORS FOR SELF-SIMILARITY PARAMETERS VIA MALLIAVIN CALCULUS
    Tudor, Ciprian A.
    Viens, Frederi G.
    ANNALS OF PROBABILITY, 2009, 37 (06): : 2093 - 2134
  • [2] AN EXTENSION OF SUB-FRACTIONAL BROWNIAN MOTION
    Sghir, Aissa
    PUBLICACIONS MATEMATIQUES, 2013, 57 (02) : 497 - 508
  • [3] A DECOMPOSITION OF SUB-FRACTIONAL BROWNIAN MOTION
    Ruiz de Chavez, J.
    Tudor, C.
    MATHEMATICAL REPORTS, 2009, 11 (01): : 67 - 74
  • [4] On the simulation of sub-fractional Brownian motion
    Morozewicz, Aneta
    Filatova, Darya
    2015 20TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2015, : 400 - 405
  • [5] Multifractal Random Walks With Fractional Brownian Motion via Malliavin Calculus
    Fauth, Alexis
    Tudor, Ciprian A.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (03) : 1963 - 1975
  • [6] EXTENDING SELF-SIMILARITY FOR FRACTIONAL BROWNIAN-MOTION
    KAPLAN, LM
    KUO, CCJ
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (12) : 3526 - 3530
  • [7] Parameter estimations for the sub-fractional Brownian motion with drift at discrete observation
    Kuang, Nenghui
    Liu, Bingquan
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2015, 29 (04) : 778 - 789
  • [8] The Lower Classes of the Sub-Fractional Brownian Motion
    El-Nouty, Charles
    STOCHASTIC DIFFERENTIAL EQUATIONS AND PROCESSES, 2012, 7 : 179 - 196
  • [9] The incre ents of a sub-fractional Brownian motion
    El-Nouty, Charles
    2016 INTERNATIONAL CONFERENCE ON INFORMATION AND DIGITAL TECHNOLOGIES (IDT), 2016, : 95 - 100
  • [10] Brownian and fractional Brownian stochastic currents via Malliavin calculus
    Flandoli, Franco
    Tudor, Ciprian A.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (01) : 279 - 306