Variations and estimators for self-similarity parameter of sub-fractional Brownian motion via Malliavin calculus

被引:3
|
作者
Liu, Junfeng [1 ]
Tang, Donglei [2 ]
Cang, Yuquan [1 ]
机构
[1] Nanjing Audit Univ, Dept Stat, Nanjing, Jiangsu, Peoples R China
[2] Nanjing Audit Univ, Dept Math, Nanjing, Jiangsu, Peoples R China
基金
中国博士后科学基金;
关键词
Subfractional Brownian motion; multiple stochastic integral; Malliavin calculus; quadratic variation; selfsimilarity; statistical estimation; MULTIPLE STOCHASTIC INTEGRALS; CENTRAL LIMIT-THEOREMS; RESPECT; SYSTEMS; TIME;
D O I
10.1080/03610926.2013.819923
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Using multiple stochastic integrals and the Malliavin calculus, we analyze the asymptotic behavior of the adjusted quadratic variation for a sub-fractional Brownian motion. We apply our results to construct strongly consistent statistical estimators for the self-similarity of sub-fractional Brownian motion.
引用
收藏
页码:3276 / 3289
页数:14
相关论文
共 50 条
  • [31] Self-similarity and fractional Brownian motions on Lie groups
    Baudoin, Fabrice
    Coutin, Laure
    ELECTRONIC JOURNAL OF PROBABILITY, 2008, 13 : 1120 - 1139
  • [32] Stochastic delay evolution equations driven by sub-fractional Brownian motion
    Li, Zhi
    Zhou, Guoli
    Luo, Jiaowan
    ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [33] Generalized k-variations and Hurst parameter estimation for the fractional wave equation via Malliavin calculus
    Shevchenko, Radomyra
    Slaoui, Meryem
    Tudor, Ciprian A.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2020, 207 : 155 - 180
  • [34] Instrumental variable estimation for stochastic differential equations linear in drift parameter and driven by a sub-fractional Brownian motion
    Rao, B. L. S. Prakasa
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2018, 36 (04) : 600 - 612
  • [35] Pricing geometric asian power options in the sub-fractional brownian motion environment
    WANG, W.E.I.
    CAI, GUANGHUI
    TAO, XIANGXING
    Chaos, Solitons and Fractals, 2021, 145
  • [36] Pricing geometric asian power options in the sub-fractional brownian motion environment *
    Wang, Wei
    Cai, Guanghui
    Tao, Xiangxing
    CHAOS SOLITONS & FRACTALS, 2021, 145
  • [37] A nonparametric estimation method for stochastic differential equation with sub-fractional Brownian motion
    Bochnacka, Dorota
    Filatova, Darya
    2017 22ND INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2017, : 437 - 442
  • [38] Fuzzy simulation of European option pricing using sub-fractional Brownian motion
    Bian, Liu
    Li, Zhi
    CHAOS SOLITONS & FRACTALS, 2021, 153
  • [39] Maximum likelihood estimator for the sub-fractional Brownian motion approximated by a random walk
    Nenghui Kuang
    Huantian Xie
    Annals of the Institute of Statistical Mathematics, 2015, 67 : 75 - 91
  • [40] Maximum likelihood estimator for the sub-fractional Brownian motion approximated by a random walk
    Kuang, Nenghui
    Xie, Huantian
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2015, 67 (01) : 75 - 91