Parameter estimations for the sub-fractional Brownian motion with drift at discrete observation

被引:16
|
作者
Kuang, Nenghui [1 ,3 ]
Liu, Bingquan [2 ]
机构
[1] Hunan Univ Sci & Technol, Sch Math & Comp Sci, Xiangtan 411201, Hunan, Peoples R China
[2] Weinan Normal Univ, Sch Math & Informat Sci, Weinan 714000, Peoples R China
[3] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Maximum likelihood estimator; sub-fractional Brownian motion; Stein's method; Malliavin calculus; MALLIAVIN CALCULUS; TIME-SERIES;
D O I
10.1214/14-BJPS246
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we investigate the L-2-consistency and the strong consistency of the maximum likelihood estimators (MLE) of the mean and variance of the sub-fractional Brownian motion with drift at discrete observation. By combining the Stein's method with Malliavin calculus, we obtain the central limit theorem and the Berry-Esseen bounds for these estimators.
引用
收藏
页码:778 / 789
页数:12
相关论文
共 50 条
  • [31] Pricing geometric asian power options in the sub-fractional brownian motion environment
    WANG, W.E.I.
    CAI, GUANGHUI
    TAO, XIANGXING
    Chaos, Solitons and Fractals, 2021, 145
  • [32] Pricing geometric asian power options in the sub-fractional brownian motion environment *
    Wang, Wei
    Cai, Guanghui
    Tao, Xiangxing
    CHAOS SOLITONS & FRACTALS, 2021, 145
  • [33] Fuzzy simulation of European option pricing using sub-fractional Brownian motion
    Bian, Liu
    Li, Zhi
    CHAOS SOLITONS & FRACTALS, 2021, 153
  • [34] A nonparametric estimation method for stochastic differential equation with sub-fractional Brownian motion
    Bochnacka, Dorota
    Filatova, Darya
    2017 22ND INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2017, : 437 - 442
  • [35] Maximum likelihood estimator for the sub-fractional Brownian motion approximated by a random walk
    Kuang, Nenghui
    Xie, Huantian
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2015, 67 (01) : 75 - 91
  • [36] Maximum likelihood estimator for the sub-fractional Brownian motion approximated by a random walk
    Nenghui Kuang
    Huantian Xie
    Annals of the Institute of Statistical Mathematics, 2015, 67 : 75 - 91
  • [37] Parameter Estimation for Ornstein-Uhlenbeck Process Driven by Sub-fractional Brownian Processes
    School of Mathematics and Statistics, An’yang Normal University, An’yang
    455000, China
    不详
    455000, China
    IAENG Int. J. Appl. Math., 2
  • [38] Nonparametric estimation of trend for stochastic differential equations driven by sub-fractional Brownian motion
    Rao, B. L. S. Prakasa
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2020, 28 (02) : 113 - 122
  • [39] Parametric Estimation in the Vasicek-Type Model Driven by Sub-Fractional Brownian Motion
    Li, Shengfeng
    Dong, Yi
    ALGORITHMS, 2018, 11 (12):
  • [40] Asymptotics of Karhunen-Loeve Eigenvalues for Sub-Fractional Brownian Motion and Its Application
    Cai, Chun-Hao
    Hu, Jun-Qi
    Wang, Ying-Li
    FRACTAL AND FRACTIONAL, 2021, 5 (04)