Parametric Estimation in the Vasicek-Type Model Driven by Sub-Fractional Brownian Motion

被引:7
|
作者
Li, Shengfeng [1 ]
Dong, Yi [2 ]
机构
[1] Bengbu Univ, Inst Appl Math, Bengbu 233030, Peoples R China
[2] Bengbu Univ, Sch Sci, Bengbu 233030, Peoples R China
来源
ALGORITHMS | 2018年 / 11卷 / 12期
关键词
least squares method; sub-fractional Brownian motion; Vasicek-type model; Young's integration; asymptotic distribution;
D O I
10.3390/a11120197
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the paper, we tackle the least squares estimators of the Vasicek-type model driven by sub-fractional Brownian motion: dX(t) = (mu + theta X-t)dt + dS(t)(H) , t >= 0 with X-0 = 0, where S-H is a sub-fractional Brownian motion whose Hurst index H is greater than 1/2, and mu is an element of R , theta is an element of R+ are two unknown parameters. Based on the so-called continuous observations, we suggest the least square estimators of mu and theta and discuss the consistency and asymptotic distributions of the two estimators.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Estimating Drift Parameters in a Sub-Fractional Vasicek-Type Process
    Khalaf, Anas D.
    Saeed, Tareq
    Abu-Shanab, Reman
    Almutiry, Waleed
    Abouagwa, Mahmoud
    [J]. ENTROPY, 2022, 24 (05)
  • [2] Maximum likelihood estimation for sub-fractional Vasicek model
    Rao, B. L. S. Prakasa
    [J]. RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2021, 29 (04) : 265 - 277
  • [3] Remarks on an integral functional driven by sub-fractional Brownian motion
    Shen, Guangjun
    Yan, Litan
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2011, 40 (03) : 337 - 346
  • [4] Remarks on an integral functional driven by sub-fractional Brownian motion
    Guangjun Shen
    Litan Yan
    [J]. Journal of the Korean Statistical Society, 2011, 40 : 337 - 346
  • [5] Nonparametric estimation of trend for stochastic differential equations driven by sub-fractional Brownian motion
    Rao, B. L. S. Prakasa
    [J]. RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2020, 28 (02) : 113 - 122
  • [6] A DECOMPOSITION OF SUB-FRACTIONAL BROWNIAN MOTION
    Ruiz de Chavez, J.
    Tudor, C.
    [J]. MATHEMATICAL REPORTS, 2009, 11 (01): : 67 - 74
  • [7] AN EXTENSION OF SUB-FRACTIONAL BROWNIAN MOTION
    Sghir, Aissa
    [J]. PUBLICACIONS MATEMATIQUES, 2013, 57 (02) : 497 - 508
  • [8] On the simulation of sub-fractional Brownian motion
    Morozewicz, Aneta
    Filatova, Darya
    [J]. 2015 20TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2015, : 400 - 405
  • [9] Optimal estimation of a signal perturbed by a sub-fractional Brownian motion
    Rao, B. L. S. Prakasa
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, 2017, 35 (03) : 533 - 541
  • [10] Stochastic delay evolution equations driven by sub-fractional Brownian motion
    Zhi Li
    Guoli Zhou
    Jiaowan Luo
    [J]. Advances in Difference Equations, 2015