Remarks on an integral functional driven by sub-fractional Brownian motion

被引:17
|
作者
Shen, Guangjun [2 ,3 ]
Yan, Litan [1 ]
机构
[1] Donghua Univ, Dept Math, Shanghai 201620, Peoples R China
[2] E China Univ Sci & Technol, Dept Math, Shanghai 200237, Peoples R China
[3] Anhui Normal Univ, Dept Math, Wuhu 241000, Peoples R China
关键词
Sub-fractional Brownian motion; Local time; Self-intersection local time; p-variation; Stochastic area integrals; LOCAL TIME; RESPECT;
D O I
10.1016/j.jkss.2010.12.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper studies the functionals A(1) (t, x) = integral(t)(0) 1([0,infinity))(x - S-s(H))ds, A(2)(t, x) = integral(t)(0) 1([0,infinity))(x - S-s(H))s(2H-1)ds, where (S-t(H))(0 <= t <= T) is a one-dimension sub-fractional Brownian motion with index H is an element of (0, 1). It shows that there exists a constant P-H is an element of (1, 2) such that p-variation of the process A(j)(t, S-t(H)) - integral(t)(0) L-j(s, S-s(H))dS(s)(H) (j = 1, 2) is equal to 0 if p > p(H), where L-j = 1, 2, are the local time and weighted local time of S-H, respectively. This extends the classical results for Brownian motion. (C) 2011 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:337 / 346
页数:10
相关论文
共 50 条
  • [1] Remarks on an integral functional driven by sub-fractional Brownian motion
    Guangjun Shen
    Litan Yan
    Journal of the Korean Statistical Society, 2011, 40 : 337 - 346
  • [2] On the Wiener integral with respect to a sub-fractional Brownian motion on an interval
    Tudor, Constantin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 351 (01) : 456 - 468
  • [3] On some maximal and integral inequalities for sub-fractional Brownian motion
    Rao, B. L. S. Prakasa
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2017, 35 (02) : 279 - 287
  • [4] A DECOMPOSITION OF SUB-FRACTIONAL BROWNIAN MOTION
    Ruiz de Chavez, J.
    Tudor, C.
    MATHEMATICAL REPORTS, 2009, 11 (01): : 67 - 74
  • [5] AN EXTENSION OF SUB-FRACTIONAL BROWNIAN MOTION
    Sghir, Aissa
    PUBLICACIONS MATEMATIQUES, 2013, 57 (02) : 497 - 508
  • [6] On the simulation of sub-fractional Brownian motion
    Morozewicz, Aneta
    Filatova, Darya
    2015 20TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2015, : 400 - 405
  • [7] Stochastic delay evolution equations driven by sub-fractional Brownian motion
    Zhi Li
    Guoli Zhou
    Jiaowan Luo
    Advances in Difference Equations, 2015
  • [8] Stochastic delay evolution equations driven by sub-fractional Brownian motion
    Li, Zhi
    Zhou, Guoli
    Luo, Jiaowan
    ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [9] An integral functional driven by fractional Brownian motion
    Sun, Xichao
    Yan, Litan
    Yu, Xianye
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (07) : 2249 - 2285
  • [10] The Lower Classes of the Sub-Fractional Brownian Motion
    El-Nouty, Charles
    STOCHASTIC DIFFERENTIAL EQUATIONS AND PROCESSES, 2012, 7 : 179 - 196