REMARKS ON SUB-FRACTIONAL BESSEL PROCESSES

被引:0
|
作者
Shen Guangjun [1 ,2 ]
Chen Chao [1 ]
Yam Litan [3 ]
机构
[1] E China Univ Sci & Technol, Dept Math, Shanghai 200237, Peoples R China
[2] Anhui Normal Univ, Dept Math, Wuhu 241000, Peoples R China
[3] Donghua Univ, Dept Math, Shanghai 201620, Peoples R China
关键词
sub-fractional Brownian motion; Malliavin calculus; sub-fractional Bessel processes; chaos expansion; BROWNIAN-MOTION; RESPECT; TIME;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S = {(S-t(1), ..., S-t(d))}t >= 0 denote a d-dimensional sub-fractional Brownian motion with index H >= 1/2. In this paper we study some properties of the process X of the form X-t :=Sigma(d)(i=1) integral(t)(0) S-s(i)/R(s)dS(s)(i), d >= 1, where R-t = root(s(t)(1))(2) + ... + (s(t)(d))(2) is the sub-fractional Bessel process.
引用
收藏
页码:1860 / 1876
页数:17
相关论文
共 50 条
  • [41] Pricing geometric asian power options in the sub-fractional brownian motion environment
    WANG, W.E.I.
    CAI, GUANGHUI
    TAO, XIANGXING
    Chaos, Solitons and Fractals, 2021, 145
  • [42] Pricing geometric asian power options in the sub-fractional brownian motion environment *
    Wang, Wei
    Cai, Guanghui
    Tao, Xiangxing
    CHAOS SOLITONS & FRACTALS, 2021, 145
  • [43] Fuzzy simulation of European option pricing using sub-fractional Brownian motion
    Bian, Liu
    Li, Zhi
    CHAOS SOLITONS & FRACTALS, 2021, 153
  • [44] A nonparametric estimation method for stochastic differential equation with sub-fractional Brownian motion
    Bochnacka, Dorota
    Filatova, Darya
    2017 22ND INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2017, : 437 - 442
  • [45] STUDY OF THE SUB-FRACTIONAL COMPOSITION OF LYSINE-RICH HISTONE OF SOME TRITICALE
    SHKUTINA, FM
    CHIRIKOVA, GB
    GENETIKA, 1980, 16 (08): : 1453 - &
  • [46] Maximum likelihood estimator for the sub-fractional Brownian motion approximated by a random walk
    Kuang, Nenghui
    Xie, Huantian
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2015, 67 (01) : 75 - 91
  • [47] Maximum likelihood estimator for the sub-fractional Brownian motion approximated by a random walk
    Nenghui Kuang
    Huantian Xie
    Annals of the Institute of Statistical Mathematics, 2015, 67 : 75 - 91
  • [48] Some properties of fractional Bessel Processes driven by fractional Brownian Motion
    Sun, Yu
    Gao, Changchun
    NEW ADVANCES IN SIMULATION, MODELLING AND OPTIMIZATION (SMO '07), 2007, : 1 - +
  • [49] Nonparametric estimation of trend for stochastic differential equations driven by sub-fractional Brownian motion
    Rao, B. L. S. Prakasa
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2020, 28 (02) : 113 - 122
  • [50] IMPULSIVE FRACTIONAL STOCHASTIC DIFFERENTIAL INCLUSIONS DRIVEN BY SUB-FRACTIONAL BROWNIAN MOTION WITH INFINITE DELAY AND SECTORIAL OPERATORS
    Chaouche, Meryem
    Guendouzi, Toufik
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2021, 16 (02): : 87 - 126