REMARKS ON SUB-FRACTIONAL BESSEL PROCESSES

被引:0
|
作者
Shen Guangjun [1 ,2 ]
Chen Chao [1 ]
Yam Litan [3 ]
机构
[1] E China Univ Sci & Technol, Dept Math, Shanghai 200237, Peoples R China
[2] Anhui Normal Univ, Dept Math, Wuhu 241000, Peoples R China
[3] Donghua Univ, Dept Math, Shanghai 201620, Peoples R China
关键词
sub-fractional Brownian motion; Malliavin calculus; sub-fractional Bessel processes; chaos expansion; BROWNIAN-MOTION; RESPECT; TIME;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S = {(S-t(1), ..., S-t(d))}t >= 0 denote a d-dimensional sub-fractional Brownian motion with index H >= 1/2. In this paper we study some properties of the process X of the form X-t :=Sigma(d)(i=1) integral(t)(0) S-s(i)/R(s)dS(s)(i), d >= 1, where R-t = root(s(t)(1))(2) + ... + (s(t)(d))(2) is the sub-fractional Bessel process.
引用
收藏
页码:1860 / 1876
页数:17
相关论文
共 50 条
  • [21] On the Wiener integral with respect to a sub-fractional Brownian motion on an interval
    Tudor, Constantin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 351 (01) : 456 - 468
  • [22] Sub-fractional Brownian motion and its relation to occupation times
    Bojdecki, T
    Gorostiza, LG
    Talarczyk, A
    STATISTICS & PROBABILITY LETTERS, 2004, 69 (04) : 405 - 419
  • [23] Asian option pricing under sub-fractional vasicek model
    Tao, Lichao
    Lai, Yuefu
    Ji, Yanting
    Tao, Xiangxing
    QUANTITATIVE FINANCE AND ECONOMICS, 2023, 7 (03): : 403 - 419
  • [24] On some maximal and integral inequalities for sub-fractional Brownian motion
    Rao, B. L. S. Prakasa
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2017, 35 (02) : 279 - 287
  • [25] Optimal estimation of a signal perturbed by a sub-fractional Brownian motion
    Rao, B. L. S. Prakasa
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2017, 35 (03) : 533 - 541
  • [26] Some processes associated with fractional Bessel processes
    Hu, Y
    Nualart, D
    JOURNAL OF THEORETICAL PROBABILITY, 2005, 18 (02) : 377 - 397
  • [27] Some Processes Associated with Fractional Bessel Processes
    Y. Hu
    D. Nualart
    Journal of Theoretical Probability, 2005, 18 : 377 - 397
  • [28] The generalized Bouleau-Yor identity for a sub-fractional Brownian motion
    Yan LiTan
    He Kun
    Chen Chao
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (10) : 2089 - 2116
  • [29] Stochastic delay evolution equations driven by sub-fractional Brownian motion
    Zhi Li
    Guoli Zhou
    Jiaowan Luo
    Advances in Difference Equations, 2015
  • [30] Stability of Nonlinear Markovian Switched Delay Sub-Fractional Stochastic Systems
    Wei, Chao
    Ma, Mengjie
    Qu, Haoran
    Wang, Haotian
    ENGINEERING LETTERS, 2023, 31 (04) : 1944 - 1948