Equivariant Message Passing for the Prediction of Tensorial Properties and Molecular Spectra

被引:0
|
作者
Schuett, Kristof T. [1 ,2 ]
Unke, Oliver T. [1 ,2 ]
Gastegger, Michael [1 ,3 ]
机构
[1] Tech Univ Berlin, Machine Learning Grp, D-10587 Berlin, Germany
[2] Berlin Inst Fdn Learning & Data, D-10587 Berlin, Germany
[3] TU Berlin, BASLEARN, BASF Joint Lab Machine Learning, D-10587 Berlin, Germany
基金
瑞士国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Message passing neural networks have become a method of choice for learning on graphs, in particular the prediction of chemical properties and the acceleration of molecular dynamics studies. While they readily scale to large training data sets, previous approaches have proven to be less data efficient than kernel methods. We identify limitations of invariant representations as a major reason and extend the message passing formulation to rotationally equivariant representations. On this basis, we propose the polarizable atom interaction neural network (PAINN) and improve on common molecule benchmarks over previous networks, while reducing model size and inference time. We leverage the equivariant atomwise representations obtained by PAINN for the prediction of tensorial properties. Finally, we apply this to the simulation of molecular spectra, achieving speedups of 4-5 orders of magnitude compared to the electronic structure reference.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Directed message passing based on attention for prediction of molecular properties
    Chen, Gong
    Maday, Yvon
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2023, 229
  • [2] Predicting tensorial molecular properties with equivariant machine learning models
    Vu Ha Anh Nguyen
    Lunghi, Alessandro
    [J]. PHYSICAL REVIEW B, 2022, 105 (16)
  • [3] SpaINN: equivariant message passing for excited-state nonadiabatic molecular dynamics
    Mausenberger, Sascha
    Mueller, Carolin
    Tkatchenko, Alexandre
    Marquetand, Philipp
    Gonzalez, Leticia
    Westermayr, Julia
    [J]. CHEMICAL SCIENCE, 2024, 15 (38) : 15880 - 15890
  • [4] Utility of Equivariant Message Passing in Cortical Mesh Segmentation
    Unyi, Daniel
    Insalata, Ferdinando
    Velickovie, Petar
    Gyires-Toth, Balint
    [J]. MEDICAL IMAGE UNDERSTANDING AND ANALYSIS, MIUA 2022, 2022, 13413 : 412 - 424
  • [5] Application of message passing neural networks for molecular property prediction
    Tang, Miru
    Li, Baiqing
    Chen, Hongming
    [J]. CURRENT OPINION IN STRUCTURAL BIOLOGY, 2023, 81
  • [6] Equivariant Message Passing Neural Network for Crystal Material Discovery
    Klipfel, Astrid
    Bouraoui, Zied
    Peltre, Olivier
    Fregier, Yael
    Harrati, Najwa
    Sayede, Adlane
    [J]. THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 12, 2023, : 14304 - 14311
  • [7] Modeling Dynamics over Meshes with Gauge Equivariant Nonlinear Message Passing
    Park, Jung Yeon
    Wong, Lawson L. S.
    Walters, Robin
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [8] A Geometric Insight into Equivariant Message Passing Neural Networks on Riemannian Manifolds
    Batatia, Ilyes
    [J]. TOPOLOGICAL, ALGEBRAIC AND GEOMETRIC LEARNING WORKSHOPS 2023, VOL 221, 2023, 221
  • [9] Equivariant Point Cloud Analysis via Learning Orientations for Message Passing
    Luo, Shitong
    Li, Jiahan
    Guan, Jiaqi
    Su, Yufeng
    Cheng, Chaoran
    Peng, Jian
    Ma, Jianzhu
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 18910 - 18919
  • [10] E(n)-Equivariant cartesian tensor message passing interatomic potential
    Wang, Junjie
    Wang, Yong
    Zhang, Haoting
    Yang, Ziyang
    Liang, Zhixin
    Shi, Jiuyang
    Wang, Hui-Tian
    Xing, Dingyu
    Sun, Jian
    [J]. NATURE COMMUNICATIONS, 2024, 15 (01)