Predicting tensorial molecular properties with equivariant machine learning models

被引:19
|
作者
Vu Ha Anh Nguyen
Lunghi, Alessandro [1 ]
机构
[1] Trinity Coll Dublin, Sch Phys, AMBER, Dublin 2, Ireland
基金
欧洲研究理事会;
关键词
NEURAL-NETWORK; ACCURATE; GENERATION;
D O I
10.1103/PhysRevB.105.165131
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Embedding molecular symmetries into machine learning models is key for efficient learning of chemico-physical scalar properties, but little evidence on how to extend the same strategy to tensorial quantities exists. Here we formulate a scalable equivariant machine learning model based on local atomic environment descriptors. We apply it to a series of molecules and show that accurate predictions can be achieved for a comprehensive list of dielectric and magnetic tensorial properties of different ranks. These results show that equivariant models are a promising platform to extend the scope of machine learning in materials modeling.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Equivariant Message Passing for the Prediction of Tensorial Properties and Molecular Spectra
    Schuett, Kristof T.
    Unke, Oliver T.
    Gastegger, Michael
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [2] Machine Learning Models for Predicting Zirconocene Properties and Barriers
    Kirkland, Justin K.
    Kumawat, Jugal
    Shaban Tameh, Maliheh
    Tolman, Tyson
    Lambert, Allison C.
    Lief, Graham R.
    Yang, Qing
    Ess, Daniel H.
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (03) : 775 - 784
  • [3] Machine Learning Models for Predicting Molecular UV-Vis Spectra with Quantum Mechanical Properties
    McNaughton, Andrew D.
    Joshi, Rajendra P.
    Knutson, Carter R.
    Fnu, Anubhav
    Luebke, Kevin J.
    Malerich, Jeremiah P.
    Madrid, Peter B.
    Kumar, Neeraj
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 63 (05) : 1462 - 1471
  • [4] An equivariant neural operator for developing nonlocal tensorial constitutive models
    Han, Jiequn
    Zhou, Xu-Hui
    Xiao, Heng
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 488
  • [5] Towards predicting liquid fuel physicochemical properties using molecular dynamics guided machine learning models
    Freitas, Rodolfo S. M.
    Lima, Agatha P. F.
    Chen, Cheng
    Rochinha, Fernando A.
    Mira, Daniel
    Jiang, Xi
    [J]. FUEL, 2022, 329
  • [6] Symmetry-Adapted Machine Learning for Tensorial Properties of Atomistic Systems
    Grisafi, Andrea
    Wilkins, David M.
    Csanyi, Gabor
    Ceriotti, Michele
    [J]. PHYSICAL REVIEW LETTERS, 2018, 120 (03)
  • [7] Extending machine learning beyond interatomic potentials for predicting molecular properties
    Fedik, Nikita
    Zubatyuk, Roman
    Kulichenko, Maksim
    Lubbers, Nicholas
    Smith, Justin S.
    Nebgen, Benjamin
    Messerly, Richard
    Li, Ying Wai
    Boldyrev, Alexander, I
    Barros, Kipton
    Isayev, Olexandr
    Tretiak, Sergei
    [J]. NATURE REVIEWS CHEMISTRY, 2022, 6 (09) : 653 - 672
  • [8] Extending machine learning beyond interatomic potentials for predicting molecular properties
    Nikita Fedik
    Roman Zubatyuk
    Maksim Kulichenko
    Nicholas Lubbers
    Justin S. Smith
    Benjamin Nebgen
    Richard Messerly
    Ying Wai Li
    Alexander I. Boldyrev
    Kipton Barros
    Olexandr Isayev
    Sergei Tretiak
    [J]. Nature Reviews Chemistry, 2022, 6 : 653 - 672
  • [9] Predicting Mechanical Properties of Magnesium Matrix Composites with Regression Models by Machine Learning
    Huang, Song-Jeng
    Adityawardhana, Yudhistira
    Sanjaya, Jeffry
    [J]. JOURNAL OF COMPOSITES SCIENCE, 2023, 7 (09):
  • [10] Machine learning models for predicting biochar properties from lignocellulosic biomass torrefaction
    Su, Guangcan
    Jiang, Peng
    [J]. BIORESOURCE TECHNOLOGY, 2024, 399