Extending machine learning beyond interatomic potentials for predicting molecular properties

被引:52
|
作者
Fedik, Nikita [1 ,2 ,3 ]
Zubatyuk, Roman [4 ]
Kulichenko, Maksim [1 ,3 ]
Lubbers, Nicholas [5 ]
Smith, Justin S. [1 ,6 ]
Nebgen, Benjamin [1 ]
Messerly, Richard [1 ]
Li, Ying Wai [5 ]
Boldyrev, Alexander, I [3 ]
Barros, Kipton [1 ,2 ]
Isayev, Olexandr [4 ]
Tretiak, Sergei [1 ,2 ,7 ]
机构
[1] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87544 USA
[2] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87544 USA
[3] Utah State Univ, Dept Chem & Biochem, Logan, UT 84322 USA
[4] Carnegie Mellon Univ, Dept Chem, 4400 5th Ave, Pittsburgh, PA 15213 USA
[5] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM USA
[6] NVIDIA, Santa Clara, CA USA
[7] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87544 USA
基金
美国国家科学基金会;
关键词
NEURAL-NETWORK POTENTIALS; COMPUTATIONAL CHEMISTRY; ELECTRONIC EXCITATIONS; BOND ORDER; CHARGES; MODEL; AROMATICITY; SIMULATIONS; DATABASE; ACCURATE;
D O I
10.1038/s41570-022-00416-3
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Machine learning (ML) is becoming a method of choice for modelling complex chemical processes and materials. ML provides a surrogate model trained on a reference dataset that can be used to establish a relationship between a molecular structure and its chemical properties. This Review highlights developments in the use of ML to evaluate chemical properties such as partial atomic charges, dipole moments, spin and electron densities, and chemical bonding, as well as to obtain a reduced quantum-mechanical description. We overview several modern neural network architectures, their predictive capabilities, generality and transferability, and illustrate their applicability to various chemical properties. We emphasize that learned molecular representations resemble quantum-mechanical analogues, demonstrating the ability of the models to capture the underlying physics. We also discuss how ML models can describe non-local quantum effects. Finally, we conclude by compiling a list of available ML toolboxes, summarizing the unresolved challenges and presenting an outlook for future development. The observed trends demonstrate that this field is evolving towards physics-based models augmented by ML, which is accompanied by the development of new methods and the rapid growth of user-friendly ML frameworks for chemistry.
引用
收藏
页码:653 / 672
页数:20
相关论文
共 50 条
  • [1] Extending machine learning beyond interatomic potentials for predicting molecular properties
    Nikita Fedik
    Roman Zubatyuk
    Maksim Kulichenko
    Nicholas Lubbers
    Justin S. Smith
    Benjamin Nebgen
    Richard Messerly
    Ying Wai Li
    Alexander I. Boldyrev
    Kipton Barros
    Olexandr Isayev
    Sergei Tretiak
    [J]. Nature Reviews Chemistry, 2022, 6 : 653 - 672
  • [2] Publisher Correction: Extending machine learning beyond interatomic potentials for predicting molecular properties
    Nikita Fedik
    Roman Zubatyuk
    Maksim Kulichenko
    Nicholas Lubbers
    Justin S. Smith
    Benjamin Nebgen
    Richard Messerly
    Ying Wai Li
    Alexander I. Boldyrev
    Kipton Barros
    Olexandr Isayev
    Sergei Tretiak
    [J]. Nature Reviews Chemistry, 2022, 6 : 916 - 916
  • [3] Extending machine learning beyond interatomic potentials for predicting molecular properties (vol 6, pg 653, 2022)
    Fedik, Nikita
    Zubatyuk, Roman
    Kulichenko, Maksim
    Lubbers, Nicholas
    Smith, Justin S.
    Nebgen, Benjamin
    Messerly, Richard
    Li, Ying Wai
    Boldyrev, Alexander I.
    Barros, Kipton
    Isayev, Olexandr
    Tretiak, Sergei
    [J]. NATURE REVIEWS CHEMISTRY, 2022, 6 (12) : 916 - 916
  • [4] Evaluation of Machine Learning Interatomic Potentials for the Properties of Gold Nanoparticles
    Fronzi, Marco
    Amos, Roger D.
    Kobayashi, Rika
    Matsumura, Naoki
    Watanabe, Kenta
    Morizawa, Rafael K.
    [J]. NANOMATERIALS, 2022, 12 (21)
  • [5] Atomistic modeling of the mechanical properties: the rise of machine learning interatomic potentials
    Mortazavi, Bohayra
    Zhuang, Xiaoying
    Rabczuk, Timon
    Shapeev, Alexander V.
    [J]. MATERIALS HORIZONS, 2023, 10 (06) : 1956 - 1968
  • [6] Machine Learning Interatomic Potentials for Heterogeneous Catalysis
    Tang, Deqi
    Ketkaew, Rangsiman
    Luber, Sandra
    [J]. CHEMISTRY-A EUROPEAN JOURNAL, 2024,
  • [7] Machine-learning interatomic potentials for pyrolysis of polysiloxanes and properties of SiCO ceramics
    Falgoust, Mitchell
    Kroll, Peter
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2024,
  • [9] Classical and machine learning interatomic potentials for BCC vanadium
    Wang, Rui
    Ma, Xiaoxiao
    Zhang, Linfeng
    Wang, Han
    Srolovitz, David J.
    Wen, Tongqi
    Wu, Zhaoxuan
    [J]. PHYSICAL REVIEW MATERIALS, 2022, 6 (11):
  • [10] Performance and Cost Assessment of Machine Learning Interatomic Potentials
    Zuo, Yunxing
    Chen, Chi
    Li, Xiangguo
    Deng, Zhi
    Chen, Yiming
    Behler, Joerg
    Csanyi, Gabor
    Shapeev, Alexander, V
    Thompson, Aidan P.
    Wood, Mitchell A.
    Ong, Shyue Ping
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2020, 124 (04): : 731 - 745