Evaluation of Machine Learning Interatomic Potentials for the Properties of Gold Nanoparticles

被引:7
|
作者
Fronzi, Marco [1 ]
Amos, Roger D. [1 ]
Kobayashi, Rika [2 ]
Matsumura, Naoki [3 ]
Watanabe, Kenta [3 ]
Morizawa, Rafael K. [3 ]
机构
[1] Univ Technol Sydney, Ultimo, NSW 2007, Australia
[2] Australian Natl Univ, Canberra, ACT 2601, Australia
[3] Fujitsu Ltd, Kawasaki, Kanagawa 2118588, Japan
基金
澳大利亚研究理事会;
关键词
machine learning potentials; gold clusters; molecular dynamics; structures; heat capacities; MOLECULAR-DYNAMICS; CLUSTERS; HEAT;
D O I
10.3390/nano12213891
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We have investigated Machine Learning Interatomic Potentials in application to the properties of gold nanoparticles through the DeePMD package, using data generated with the ab-initio VASP program. Benchmarking was carried out on Au-20 nanoclusters against ab-initio molecular dynamics simulations and show we can achieve similar accuracy with the machine learned potential at far reduced cost using LAMMPS. We have been able to reproduce structures and heat capacities of several isomeric forms. Comparison of our workflow with similar ML-IP studies is discussed and has identified areas for future improvement.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Evaluation of Machine Learning Interatomic Potentials for Gold Nanoparticles-Transferability towards Bulk
    Fronzi, Marco
    Amos, Roger D.
    Kobayashi, Rika
    [J]. NANOMATERIALS, 2023, 13 (12)
  • [2] Discrepancies and error evaluation metrics for machine learning interatomic potentials
    Liu, Yunsheng
    He, Xingfeng
    Mo, Yifei
    [J]. NPJ COMPUTATIONAL MATERIALS, 2023, 9 (01)
  • [3] Discrepancies and error evaluation metrics for machine learning interatomic potentials
    Yunsheng Liu
    Xingfeng He
    Yifei Mo
    [J]. npj Computational Materials, 9
  • [4] Extending machine learning beyond interatomic potentials for predicting molecular properties
    Nikita Fedik
    Roman Zubatyuk
    Maksim Kulichenko
    Nicholas Lubbers
    Justin S. Smith
    Benjamin Nebgen
    Richard Messerly
    Ying Wai Li
    Alexander I. Boldyrev
    Kipton Barros
    Olexandr Isayev
    Sergei Tretiak
    [J]. Nature Reviews Chemistry, 2022, 6 : 653 - 672
  • [5] Extending machine learning beyond interatomic potentials for predicting molecular properties
    Fedik, Nikita
    Zubatyuk, Roman
    Kulichenko, Maksim
    Lubbers, Nicholas
    Smith, Justin S.
    Nebgen, Benjamin
    Messerly, Richard
    Li, Ying Wai
    Boldyrev, Alexander, I
    Barros, Kipton
    Isayev, Olexandr
    Tretiak, Sergei
    [J]. NATURE REVIEWS CHEMISTRY, 2022, 6 (09) : 653 - 672
  • [6] Atomistic modeling of the mechanical properties: the rise of machine learning interatomic potentials
    Mortazavi, Bohayra
    Zhuang, Xiaoying
    Rabczuk, Timon
    Shapeev, Alexander V.
    [J]. MATERIALS HORIZONS, 2023, 10 (06) : 1956 - 1968
  • [7] Machine Learning Interatomic Potentials for Heterogeneous Catalysis
    Tang, Deqi
    Ketkaew, Rangsiman
    Luber, Sandra
    [J]. CHEMISTRY-A EUROPEAN JOURNAL, 2024,
  • [8] Machine-learning interatomic potentials for pyrolysis of polysiloxanes and properties of SiCO ceramics
    Falgoust, Mitchell
    Kroll, Peter
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2024,
  • [10] Classical and machine learning interatomic potentials for BCC vanadium
    Wang, Rui
    Ma, Xiaoxiao
    Zhang, Linfeng
    Wang, Han
    Srolovitz, David J.
    Wen, Tongqi
    Wu, Zhaoxuan
    [J]. PHYSICAL REVIEW MATERIALS, 2022, 6 (11):