Evaluation of Machine Learning Interatomic Potentials for the Properties of Gold Nanoparticles

被引:7
|
作者
Fronzi, Marco [1 ]
Amos, Roger D. [1 ]
Kobayashi, Rika [2 ]
Matsumura, Naoki [3 ]
Watanabe, Kenta [3 ]
Morizawa, Rafael K. [3 ]
机构
[1] Univ Technol Sydney, Ultimo, NSW 2007, Australia
[2] Australian Natl Univ, Canberra, ACT 2601, Australia
[3] Fujitsu Ltd, Kawasaki, Kanagawa 2118588, Japan
基金
澳大利亚研究理事会;
关键词
machine learning potentials; gold clusters; molecular dynamics; structures; heat capacities; MOLECULAR-DYNAMICS; CLUSTERS; HEAT;
D O I
10.3390/nano12213891
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We have investigated Machine Learning Interatomic Potentials in application to the properties of gold nanoparticles through the DeePMD package, using data generated with the ab-initio VASP program. Benchmarking was carried out on Au-20 nanoclusters against ab-initio molecular dynamics simulations and show we can achieve similar accuracy with the machine learned potential at far reduced cost using LAMMPS. We have been able to reproduce structures and heat capacities of several isomeric forms. Comparison of our workflow with similar ML-IP studies is discussed and has identified areas for future improvement.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Structural evolution in gold nanoparticles using artificial neural network based interatomic potentials
    Jindal, Shweta
    Bulusu, Satya S.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2020, 152 (15):
  • [42] Transferability and Accuracy of Ionic Liquid Simulations with Equivariant Machine Learning Interatomic Potentials
    Goodwin, Zachary A. H.
    Wenny, Malia B.
    Yang, Julia H.
    Cepellotti, Andrea
    Ding, Jingxuan
    Bystrom, Kyle
    Duschatko, Blake R.
    Johansson, Anders
    Sun, Lixin
    Batzner, Simon
    Musaelian, Albert
    Mason, Jarad A.
    Kozinsky, Boris
    Molinari, Nicola
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2024, 15 (30): : 7539 - 7547
  • [43] Beam induced heating in electron microscopy modeled with machine learning interatomic potentials
    Valencia, Cuauhtemoc Nunez
    Lomholdt, William Bang
    Larsen, Matthew Helmi Leth
    Hansen, Thomas W.
    Schiotz, Jakob
    [J]. NANOSCALE, 2024, 16 (11) : 5750 - 5759
  • [44] Optimized symmetry functions for machine-learning interatomic potentials of multicomponent systems
    Rostami, Samare
    Amsler, Maximilian
    Ghasemi, S. Alireza
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2018, 149 (12):
  • [45] Accessing negative Poisson's ratio of graphene by machine learning interatomic potentials
    Wu, Jing
    Zhou, E.
    Qin, Zhenzhen
    Zhang, Xiaoliang
    Qin, Guangzhao
    [J]. NANOTECHNOLOGY, 2022, 33 (27)
  • [46] Accelerating explicit solvent models of heterogeneous catalysts with machine learning interatomic potentials
    Chen, Benjamin W. J.
    Zhang, Xinglong
    Zhang, Jia
    [J]. CHEMICAL SCIENCE, 2023, 14 (31) : 8338 - 8354
  • [47] Extending machine learning beyond interatomic potentials for predicting molecular properties (vol 6, pg 653, 2022)
    Fedik, Nikita
    Zubatyuk, Roman
    Kulichenko, Maksim
    Lubbers, Nicholas
    Smith, Justin S.
    Nebgen, Benjamin
    Messerly, Richard
    Li, Ying Wai
    Boldyrev, Alexander I.
    Barros, Kipton
    Isayev, Olexandr
    Tretiak, Sergei
    [J]. NATURE REVIEWS CHEMISTRY, 2022, 6 (12) : 916 - 916
  • [48] Benchmarking of machine learning interatomic potentials for reactive hydrogen dynamics at metal surfaces
    Stark, Wojciech G.
    van der Oord, Cas
    Batatia, Ilyes
    Zhang, Yaolong
    Jiang, Bin
    Csanyi, Gabor
    Maurer, Reinhard J.
    [J]. MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (03):
  • [49] Robust training of machine learning interatomic potentials with dimensionality reduction and stratified sampling
    Qi, Ji
    Ko, Tsz Wai
    Wood, Brandon C.
    Pham, Tuan Anh
    Ong, Shyue Ping
    [J]. NPJ COMPUTATIONAL MATERIALS, 2024, 10 (01)
  • [50] KLIFF: A framework to develop physics-based and machine learning interatomic potentials
    Wen, Mingjian
    Afshar, Yaser
    Elliott, Ryan S.
    Tadmor, Ellad B.
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2022, 272