Optimized symmetry functions for machine-learning interatomic potentials of multicomponent systems

被引:24
|
作者
Rostami, Samare [1 ]
Amsler, Maximilian [2 ]
Ghasemi, S. Alireza [1 ]
机构
[1] Inst Adv Studies Basic Sci, POB 45195-1159, Zanjan, Iran
[2] Cornell Univ, Lab Atom & Solid State Phys, Ithaca, NY 14853 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2018年 / 149卷 / 12期
基金
瑞士国家科学基金会; 美国国家科学基金会;
关键词
TOTAL-ENERGY CALCULATIONS; SURFACES; METALS; OXIDES;
D O I
10.1063/1.5040005
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Current machine-learning methods to reproduce ab initio potential energy landscapes suffer from an unfavorable computational scaling with respect to the number of chemical species. In this work, we propose a new approach by using optimized symmetry functions to explore similarities of structures in multicomponent systems in order to yield linear complexity. We combine these symmetry functions with the charge equilibration via neural network technique, a reliable artificial neural network potential for ionic materials, and apply this method to study alkali-halide materials MX with 6 chemical species (M = {Li, Na, K} and X = {F, Cl, Br}). Our results show that our approach provides good agreement both with experimental and DFT reference data of many physical and structural properties for any chemical combination. Published by AIP Publishing.
引用
收藏
页数:8
相关论文
共 50 条
  • [2] Multiscale machine-learning interatomic potentials for ferromagnetic and liquid iron
    Byggmastar, J.
    Nikoulis, G.
    Fellman, A.
    Granberg, F.
    Djurabekova, F.
    Nordlund, K.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2022, 34 (30)
  • [3] Accelerating crystal structure prediction by machine-learning interatomic potentials with active learning
    Podryabinkin, Evgeny, V
    Tikhonov, Evgeny, V
    Shapeev, Alexander, V
    Oganov, Artem R.
    [J]. PHYSICAL REVIEW B, 2019, 99 (06)
  • [4] Machine-learning interatomic potentials for pyrolysis of polysiloxanes and properties of SiCO ceramics
    Falgoust, Mitchell
    Kroll, Peter
    [J]. Journal of the American Ceramic Society, 1600, 107 (12): : 7653 - 7664
  • [5] Machine-learning interatomic potentials for pyrolysis of polysiloxanes and properties of SiCO ceramics
    Falgoust, Mitchell
    Kroll, Peter
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2024,
  • [6] Exploring diffusion behavior of superionic materials using machine-learning interatomic potentials
    Hsing, Cheng-Rong
    Nguyen, Duc-Long
    Wei, Ching -Ming
    [J]. PHYSICAL REVIEW MATERIALS, 2024, 8 (04):
  • [7] Applications of machine-learning interatomic potentials for modeling ceramics, glass, and electrolytes: A review
    Urata, Shingo
    Bertani, Marco
    Pedone, Alfonso
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2024, : 7665 - 7691
  • [8] Exploring thermal expansion of carbon-based nanosheets by machine-learning interatomic potentials
    Mortazavi, Bohayra
    Rajabpour, Ali
    Zhuang, Xiaoying
    Rabczuk, Timon
    Shapeev, Alexander, V
    [J]. CARBON, 2022, 186 : 501 - 508
  • [9] Recent advances in lattice thermal conductivity calculation using machine-learning interatomic potentials
    Arabha, Saeed
    Aghbolagh, Zahra Shokri
    Ghorbani, Khashayar
    Hatam-Lee, S. Milad
    Rajabpour, Ali
    [J]. JOURNAL OF APPLIED PHYSICS, 2021, 130 (21)
  • [10] Machine-learning effective many-body potentials for anisotropic particles using orientation-dependent symmetry functions
    Campos-Villalobos, Gerardo
    Giunta, Giuliana
    Marin-Aguilar, Susana
    Dijkstra, Marjolein
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2022, 157 (02):