SpaINN: equivariant message passing for excited-state nonadiabatic molecular dynamics

被引:0
|
作者
Mausenberger, Sascha [1 ,2 ]
Mueller, Carolin [3 ,4 ]
Tkatchenko, Alexandre [4 ]
Marquetand, Philipp [1 ]
Gonzalez, Leticia [1 ]
Westermayr, Julia [5 ,6 ]
机构
[1] Univ Vienna, Inst Theoret Chem, Fac Chem, Wahringer Str 17, A-1090 Vienna, Austria
[2] Univ Vienna, Vienna Doctoral Sch Chem DoSChem, Wahringer Str 42, A-1090 Vienna, Austria
[3] Friedrich Alexander Univ Erlangen Nurnberg, Comp Chem Ctr, Dept Chem & Pharm, Nagelsbachstr 25, D-91052 Erlangen, Germany
[4] Univ Luxembourg, Dept Phys & Mat Sci, 162 A,Ave Faiencerie, L-1511 Luxembourg, Luxembourg
[5] Univ Leipzig, Wilhelm Ostwald Inst Phys & Theoret Chem, Linnestr 2, D-04103 Leipzig, Germany
[6] Ctr Scalable Data Analyt & Artificial Intelligence, Dresden, Germany
关键词
DESIGN;
D O I
10.1039/d4sc04164j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Excited-state molecular dynamics simulations are crucial for understanding processes like photosynthesis, vision, and radiation damage. However, the computational complexity of quantum chemical calculations restricts their scope. Machine learning offers a solution by delivering high-accuracy properties at lower computational costs. We present SpaiNN, an open-source Python software for ML-driven surface hopping nonadiabatic molecular dynamics simulations. SpaiNN combines the invariant and equivariant neural network architectures of SchNetPack with SHARC for surface hopping dynamics. Its modular design allows users to implement and adapt modules easily. We compare rotationally-invariant and equivariant representations in fitting potential energy surfaces of multiple electronic states and properties arising from the interaction of two electronic states. Simulations of the methyleneimmonium cation and various alkenes demonstrate the superior performance of equivariant SpaiNN models, improving accuracy, generalization, and efficiency in both training and inference.
引用
收藏
页码:15880 / 15890
页数:11
相关论文
共 50 条
  • [1] First Principles Nonadiabatic Excited-State Molecular Dynamics in NWChem
    Song, Huajing
    Fischer, Sean A.
    Zhang, Yu
    Cramer, Christopher J.
    Mukamel, Shaul
    Govind, Niranjan
    Tretiak, Sergei
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2020, 16 (10) : 6418 - 6427
  • [2] Nonadiabatic excited-state molecular dynamics: Treatment of electronic decoherence
    Nelson, Tammie
    Fernandez-Alberti, Sebastian
    Roitberg, Adrian E.
    Tretiak, Sergei
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (22):
  • [3] Nonadiabatic Excited-State Molecular Dynamics Methodologies: Comparison and Convergence
    Freixas, Victor M.
    White, Alexander J.
    Nelson, Tammie
    Song, Huajing
    Makhov, Dmitry, V
    Shalashilin, Dmitrii
    Fernandez-Alberti, Sebastian
    Tretiale, Sergei
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2021, 12 (11): : 2970 - 2982
  • [4] Nonadiabatic Excited-State Molecular Dynamics: On-the-Fly Reduction of Excited States
    Nelson, Tammie
    Fernandez-Alberti, Sebastian
    Tretiak, Sergei
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [5] Nonadiabatic Excited-State Molecular Dynamics Modeling of Photoinduced Dynamics in Conjugated Molecules
    Nelson, Tammie
    Fernandez-Alberti, Sebastian
    Chernyak, Vladimir
    Roitberg, Adrian E.
    Tretiak, Sergei
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2011, 115 (18): : 5402 - 5414
  • [6] Nonadiabatic Excited-State Molecular Dynamics for Open-Shell Systems
    Zhang, Yu
    Li, Linqiu
    Tretiak, Sergei
    Nelson, Tammie
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2020, 16 (04) : 2053 - 2064
  • [7] Nonadiabatic excited-state molecular dynamics: Numerical tests of convergence and parameters
    Nelson, Tammie
    Fernandez-Alberti, Sebastian
    Chernyak, Vladimir
    Roitberg, Adrian E.
    Tretiak, Sergei
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (05):
  • [8] Nonadiabatic Excited-State Dynamics with Machine Learning
    Dral, Pavlo O.
    Barbatti, Mario
    Thiel, Walter
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (19): : 5660 - 5663
  • [9] Deep Learning for Nonadiabatic Excited-State Dynamics
    Chen, Wen-Kai
    Liu, Xiang-Yang
    Fang, Wei-Hai
    Dral, Pavlo O.
    Cui, Ganglong
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (23): : 6702 - 6708
  • [10] Nonadiabatic excited-state molecular dynamics: On-the-fly limiting of essential excited states
    Nelson, Tammie
    Naumov, Artem
    Fernandez-Alberti, Sebastian
    Tretiak, Sergei
    [J]. CHEMICAL PHYSICS, 2016, 481 : 84 - 90