Equivariant Message Passing Neural Network for Crystal Material Discovery

被引:0
|
作者
Klipfel, Astrid [1 ,2 ,3 ]
Bouraoui, Zied [1 ]
Peltre, Olivier [1 ,3 ]
Fregier, Yael [3 ]
Harrati, Najwa [2 ]
Sayede, Adlane [2 ]
机构
[1] Univ Artois, CRIL, UMR 8188, F-62300 Lens, France
[2] Univ Artois, UCCS, UMR 8181, F-62300 Lens, France
[3] Univ Artois, LML, UR 2462, F-62300 Lens, France
关键词
TOTAL-ENERGY CALCULATIONS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automatic material discovery with desired properties is a fundamental challenge for material sciences. Considerable attention has recently been devoted to generating stable crystal structures. While existing work has shown impressive success on supervised tasks such as property prediction, the progress on unsupervised tasks such as material generation is still hampered by the limited extent to which the equivalent geometric representations of the same crystal are considered. To address this challenge, we propose EMPNN a periodic equivariant message-passing neural network that learns crystal lattice deformation in an unsupervised fashion. Our model equivalently acts on lattice according to the deformation action that must be performed, making it suitable for crystal generation, relaxation and optimisation. We present experimental evaluations that demonstrate the effectiveness of our approach.
引用
收藏
页码:14304 / 14311
页数:8
相关论文
共 50 条
  • [1] Pathfinder Discovery Networks for Neural Message Passing
    Rozemberczki, Benedek
    Englert, Peter
    Kapoor, Amol
    Blais, Martin
    Perozzi, Bryan
    [J]. PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), 2021, : 2547 - 2558
  • [2] A Geometric Insight into Equivariant Message Passing Neural Networks on Riemannian Manifolds
    Batatia, Ilyes
    [J]. TOPOLOGICAL, ALGEBRAIC AND GEOMETRIC LEARNING WORKSHOPS 2023, VOL 221, 2023, 221
  • [3] Message Passing Neural Network Versus Message Passing Algorithm for Cooperative Positioning
    Tedeschini, Bernardo Camajori
    Brambilla, Mattia
    Nicoli, Monica
    [J]. IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2023, 9 (06) : 1666 - 1676
  • [4] Cross Message Passing Graph Neural Network
    Zhang, Zeyu
    Liu, Zheng
    Zhou, Qiyun
    Qu, Yanwen
    [J]. 2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [5] Utility of Equivariant Message Passing in Cortical Mesh Segmentation
    Unyi, Daniel
    Insalata, Ferdinando
    Velickovie, Petar
    Gyires-Toth, Balint
    [J]. MEDICAL IMAGE UNDERSTANDING AND ANALYSIS, MIUA 2022, 2022, 13413 : 412 - 424
  • [6] Permutation-Equivariant and Proximity-Aware Graph Neural Networks With Stochastic Message Passing
    Zhang, Ziwei
    Niu, Chenhao
    Cui, Peng
    Pei, Jian
    Zhang, Bo
    Zhu, Wenwu
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (06) : 6182 - 6193
  • [7] A novel message passing neural network based on neighborhood expansion
    Xue, Yanfeng
    Jin, Zhen
    Apasiba, Abeo Timothy
    [J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (03) : 849 - 860
  • [8] MACE: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields
    Batatia, Ilyes
    Kovacs, David Peter
    Simm, Gregor N. C.
    Ortner, Christoph
    Csanyi, Gabor
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [9] Explicit Message-Passing Heterogeneous Graph Neural Network
    Xu, Lei
    He, Zhen-Yu
    Wang, Kai
    Wang, Chang-Dong
    Huang, Shu-Qiang
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (07) : 6916 - 6929
  • [10] BeMap: Balanced Message Passing for Fair Graph Neural Network
    Lin, Xiao
    Kang, Jian
    Cong, Weilin
    Tong, Hanghang
    [J]. LEARNING ON GRAPHS CONFERENCE, VOL 231, 2023, 231