A Geometric Insight into Equivariant Message Passing Neural Networks on Riemannian Manifolds

被引:0
|
作者
Batatia, Ilyes [1 ,2 ]
机构
[1] Univ Paris Saclay, ENS Paris Saclay, F-91190 Gif Sur Yvette, France
[2] Univ Cambridge, Cambridge CB2 1PZ, England
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work proposes a geometric insight into equivariant message passing on Riemannian manifolds. As previously proposed, numerical features on Riemannian manifolds are represented as coordinate-independent feature fields on the manifold. To any coordinate-independent feature field on a manifold comes attached an equivariant embedding of the principal bundle to the space of numerical features. We argue that the metric this embedding induces on the numerical feature space should optimally preserve the principal bundle's original metric. This optimality criterion leads to the minimization of a twisted form of the Polyakov action with respect to the graph of this embedding, yielding an equivariant diffusion process on the associated vector bundle. We obtain a message passing scheme on the manifold by discretizing the diffusion equation flow for a fixed time step. We propose a higher-order equivariant diffusion process equivalent to diffusion on the cartesian product of the base manifold. The discretization of the higher-order diffusion process on a graph yields a new general class of equivariant GNN, generalizing the ACE and MACE formalism to data on Riemannian manifolds.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Equivariant Message Passing Neural Network for Crystal Material Discovery
    Klipfel, Astrid
    Bouraoui, Zied
    Peltre, Olivier
    Fregier, Yael
    Harrati, Najwa
    Sayede, Adlane
    [J]. THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 12, 2023, : 14304 - 14311
  • [2] Permutation-Equivariant and Proximity-Aware Graph Neural Networks With Stochastic Message Passing
    Zhang, Ziwei
    Niu, Chenhao
    Cui, Peng
    Pei, Jian
    Zhang, Bo
    Zhu, Wenwu
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (06) : 6182 - 6193
  • [3] MACE: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields
    Batatia, Ilyes
    Kovacs, David Peter
    Simm, Gregor N. C.
    Ortner, Christoph
    Csanyi, Gabor
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [4] Stability of Neural Networks on Riemannian Manifolds
    Wang, Zhiyang
    Ruiz, Luana
    Ribeiro, Alejandro
    [J]. 29TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2021), 2021, : 1845 - 1849
  • [5] Message Passing Neural Networks for Hypergraphs
    Heydari, Sajjad
    Livi, Lorenzo
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT II, 2022, 13530 : 583 - 592
  • [6] Geometric Wavelet Scattering Networks on Compact Riemannian Manifolds
    Perlmutter, Michael
    Gao, Feng
    Wolf, Guy
    Hirn, Matthew
    [J]. MATHEMATICAL AND SCIENTIFIC MACHINE LEARNING, VOL 107, 2020, 107 : 570 - 604
  • [7] Geometric deep learning and equivariant neural networks
    Jan E. Gerken
    Jimmy Aronsson
    Oscar Carlsson
    Hampus Linander
    Fredrik Ohlsson
    Christoffer Petersson
    Daniel Persson
    [J]. Artificial Intelligence Review, 2023, 56 : 14605 - 14662
  • [8] Geometric deep learning and equivariant neural networks
    Gerken, Jan E.
    Aronsson, Jimmy
    Carlsson, Oscar
    Linander, Hampus
    Ohlsson, Fredrik
    Petersson, Christoffer
    Persson, Daniel
    [J]. ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (12) : 14605 - 14662
  • [9] Geodesic Convolutional Neural Networks on Riemannian Manifolds
    Masci, Jonathan
    Boscaini, Davide
    Bronstein, Michael M.
    Vandergheynst, Pierre
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOP (ICCVW), 2015, : 832 - 840
  • [10] Enhancing geometric representations for molecules with equivariant vector-scalar interactive message passing
    Yusong Wang
    Tong Wang
    Shaoning Li
    Xinheng He
    Mingyu Li
    Zun Wang
    Nanning Zheng
    Bin Shao
    Tie-Yan Liu
    [J]. Nature Communications, 15