An upwind numerical solution of nonlinear advection-diffusion problems with a moving heat source

被引:0
|
作者
Al-Khalidy, N [1 ]
机构
[1] Silesian Tech Univ, PL-44101 Gliwice, Poland
关键词
Welding; Welding Process; Welding Speed; Upwind Scheme; Nonlinear Boundary Condition;
D O I
10.1007/s002310050261
中图分类号
O414.1 [热力学];
学科分类号
摘要
In the present work, two-dimensional temperature variations and a position of a weldpool within a workpiece during keyhole plasma are welding are determined. The model allows to include temperature dependent thermal properties, variable welding speed, different keyhole radii and a nonlinear boundary condition of the third kind on the upper and the lower surfaces of the workpiece. The upwind scheme (donor cell method) is employed to present physically realistic numerical solutions. The obtained results can be used for controlling the plasma are welding process through the controlling of plasma jet diameter.
引用
收藏
页码:287 / 293
页数:7
相关论文
共 50 条
  • [31] Nonlocal Nonlinear Advection-Diffusion Equations
    Peter CONSTANTIN
    [J]. Chinese Annals of Mathematics,Series B, 2017, (01) : 281 - 292
  • [32] A computational study of three numerical methods for some advection-diffusion problems
    Appadu, A. R.
    Djoko, J. K.
    Gidey, H. H.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2016, 272 : 629 - 647
  • [33] A Hyperbolic Theory for Advection-Diffusion Problems: Mathematical Foundations and Numerical Modeling
    Hector Gomez
    Ignasi Colominas
    Fermín Navarrina
    José París
    Manuel Casteleiro
    [J]. Archives of Computational Methods in Engineering, 2010, 17 : 191 - 211
  • [34] Application of Nonlinear Monotone Finite Volume Schemes to Advection-Diffusion Problems
    Vassilevski, Yuri
    Danilov, Alexander
    Kapyrin, Ivan
    Nikitin, Kirill
    [J]. FINITE VOLUMES FOR COMPLEX APPLICATIONS VI: PROBLEMS & PERSPECTIVES, VOLS 1 AND 2, 2011, 4 : 761 - 769
  • [35] A Hyperbolic Theory for Advection-Diffusion Problems: Mathematical Foundations and Numerical Modeling
    Gomez, Hector
    Colominas, Ignasi
    Navarrina, Fermin
    Paris, Jose
    Casteleiro, Manuel
    [J]. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2010, 17 (02) : 191 - 211
  • [36] ANDERSON ACCELERATION FOR NONLINEAR FINITE VOLUME SCHEME FOR ADVECTION-DIFFUSION PROBLEMS
    Lipnikov, K.
    Svyatskiy, D.
    Vassilevski, Y.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (02): : A1120 - A1136
  • [37] Numerical Solution of Advection-Diffusion Equation Using Meshless Method of Lines
    Askari, Maysam
    Adibi, Hojatollah
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2017, 41 (A2): : 457 - 464
  • [38] A study concerning the solution of advection-diffusion problems by the Boundary Element Method
    Cunha, C. L. N.
    Carrer, J. A. M.
    Oliveira, M. F.
    Costa, V. L.
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2016, 65 : 79 - 94
  • [39] A numerical solution for advection-diffusion equation using dual reciprocity method
    Shiva, Afshin
    Adibi, Hojatollah
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2013, 29 (03) : 843 - 856
  • [40] A numerical study of heat source reconstruction for the advection-diffusion operator: A conjugate gradient method stabilized with SVD
    Ye, Jing
    Farge, Laurent
    Andre, Stephane
    Neveu, Alain
    [J]. INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2016, 104 : 68 - 85