Numerical Solution of Advection-Diffusion Equation Using Meshless Method of Lines

被引:12
|
作者
Askari, Maysam [1 ]
Adibi, Hojatollah [1 ]
机构
[1] Islamic Azad Univ, Cent Tehran Branch, Dept Math, Tehran, Iran
关键词
Advection-diffusion equation; Meshless method of lines; Radial basis function; Multiquadric; Gaussian; Inverse quadric; Inverse multiquadric; FINITE-ELEMENT-METHOD; SCATTERED DATA; DISPERSION; HEAT;
D O I
10.1007/s40995-017-0251-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we present a meshless method of lines to solve one-dimensional advection-diffusion equation. For this aim, we use radial basis functions for approximate derivatives in space and fourth order Runge-Kutta scheme to solve the gained system of ordinary differential equations. Here, we use different types of radial basis functions such as multiquadric, Gaussian, inverse quadric and inverse multiquadric. The accuracy and applicability of this method are verified through the various examples. Our study shows that this method is very simple and can be easily used for solution of time-dependent partial differential equations.
引用
收藏
页码:457 / 464
页数:8
相关论文
共 50 条
  • [1] Numerical Solution of Advection–Diffusion Equation Using Meshless Method of Lines
    Maysam Askari
    Hojatollah Adibi
    [J]. Iranian Journal of Science and Technology, Transactions A: Science, 2017, 41 : 457 - 464
  • [2] Modelling of the advection-diffusion equation with a meshless method without numerical diffusion
    Gavete, Luis
    Urena, Francisco
    Benito, Juan Jose
    Lucia Gavete, Maria
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2012, 89 (03) : 377 - 389
  • [3] Numerical solution of an advection-diffusion equation
    Solución numérica de una ecuación del tipo advección-difusión
    [J]. 1600, Centro de Informacion Tecnologica (25):
  • [4] A numerical solution for advection-diffusion equation using dual reciprocity method
    Shiva, Afshin
    Adibi, Hojatollah
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2013, 29 (03) : 843 - 856
  • [5] A Meshless Method for Advection-Diffusion Problems
    Xue, Dangqin
    Zhao, Huanping
    Zhang, Jiaxi
    Hou, Shulin
    [J]. ENERGY DEVELOPMENT, PTS 1-4, 2014, 860-863 : 1594 - +
  • [6] Numerical solution of Advection-Diffusion Equation using Graph theoretic polynomial collocation method
    Kumbinarasaiah, S.
    Nirmala, A. N.
    [J]. RESULTS IN CONTROL AND OPTIMIZATION, 2023, 12
  • [7] Numerical Solution of Advection-Diffusion Equation of Fractional Order Using Chebyshev Collocation Method
    Ali Shah, Farman
    Boulila, Wadii
    Koubaa, Anis
    Mlaiki, Nabil
    [J]. FRACTAL AND FRACTIONAL, 2023, 7 (10)
  • [8] Numerical solution of the advection-diffusion equation using Laplace transform finite analytical method
    Ahsan, Mahmud
    [J]. INTERNATIONAL JOURNAL OF RIVER BASIN MANAGEMENT, 2012, 10 (02) : 177 - 188
  • [9] An implicit numerical method for the solution of the fractional advection-diffusion equation with delay
    Pimenov, V. G.
    Hendy, A. S.
    [J]. TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2016, 22 (02): : 218 - 226
  • [10] Solution of the Advection-Diffusion Equation Using the Differential Quadrature Method
    Kaya, Birol
    [J]. KSCE JOURNAL OF CIVIL ENGINEERING, 2010, 14 (01) : 69 - 75