Numerical Solution of Advection-Diffusion Equation Using Meshless Method of Lines

被引:12
|
作者
Askari, Maysam [1 ]
Adibi, Hojatollah [1 ]
机构
[1] Islamic Azad Univ, Cent Tehran Branch, Dept Math, Tehran, Iran
关键词
Advection-diffusion equation; Meshless method of lines; Radial basis function; Multiquadric; Gaussian; Inverse quadric; Inverse multiquadric; FINITE-ELEMENT-METHOD; SCATTERED DATA; DISPERSION; HEAT;
D O I
10.1007/s40995-017-0251-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we present a meshless method of lines to solve one-dimensional advection-diffusion equation. For this aim, we use radial basis functions for approximate derivatives in space and fourth order Runge-Kutta scheme to solve the gained system of ordinary differential equations. Here, we use different types of radial basis functions such as multiquadric, Gaussian, inverse quadric and inverse multiquadric. The accuracy and applicability of this method are verified through the various examples. Our study shows that this method is very simple and can be easily used for solution of time-dependent partial differential equations.
引用
收藏
页码:457 / 464
页数:8
相关论文
共 50 条
  • [41] Computationally Efficient Hybrid Method for the Numerical Solution of the 2D Time Fractional Advection-Diffusion Equation
    Salama, Fouad Mohammad
    Ali, Norhashidah Hj Mohd
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICAL ENGINEERING AND MANAGEMENT SCIENCES, 2020, 5 (03) : 432 - 446
  • [42] Solutions of the advection-diffusion equation
    Tirabassi, T
    [J]. AIR POLLUTION V, 1997, : 197 - 206
  • [43] A meshless method of lines for the numerical solution of KdV equation using radial basis functions
    Shen, Quan
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2009, 33 (10) : 1171 - 1180
  • [44] Analytical solution of the advection-diffusion equation with nonlocal closure of the turbulent diffusion
    Moreira, DM
    Vilhena, NT
    Carvalho, JC
    Degrazia, GA
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2005, 20 (10) : 1347 - 1351
  • [45] Solution of the advection-diffusion equation using a combination of discontinuous and mixed finite elements
    Siegel, P
    Mose, R
    Ackerer, P
    Jaffre, J
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1997, 24 (06) : 595 - 613
  • [46] A spectral embedding method applied to the advection-diffusion equation
    Elghaoui, M
    Pasquetti, R
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 125 (02) : 464 - 476
  • [47] Lattice Boltzmann method for the fractional advection-diffusion equation
    Zhou, J. G.
    Haygarth, P. M.
    Withers, P. J. A.
    Macleod, C. J. A.
    Falloon, P. D.
    Beven, K. J.
    Ockenden, M. C.
    Forber, K. J.
    Hollaway, M. J.
    Evans, R.
    Collins, A. L.
    Hiscock, K. M.
    Wearing, C.
    Kahana, R.
    Velez, M. L. Villamizar
    [J]. PHYSICAL REVIEW E, 2016, 93 (04)
  • [48] Taylor-Galerkin method for advection-diffusion equation
    Dag, Idris
    Canivar, Aynur
    Sahin, Ali
    [J]. KYBERNETES, 2011, 40 (5-6) : 762 - 777
  • [49] A Numerical Algorithm for the Caputo Tempered Fractional Advection-Diffusion Equation
    Wenhui Guan
    Xuenian Cao
    [J]. Communications on Applied Mathematics and Computation, 2021, 3 : 41 - 59
  • [50] Finite Element Method for Solving the Advection-Diffusion Equation
    Amali, Onjefu
    Agwu, Nwojo N.
    [J]. 2017 13TH INTERNATIONAL CONFERENCE ON ELECTRONICS, COMPUTER AND COMPUTATION (ICECCO), 2017,