Modelling of the advection-diffusion equation with a meshless method without numerical diffusion

被引:5
|
作者
Gavete, Luis [1 ]
Urena, Francisco [2 ]
Benito, Juan Jose [3 ]
Lucia Gavete, Maria [4 ]
机构
[1] Univ Politecn Madrid, Dept Matemat Aplicada Recursos Nat, Madrid, Spain
[2] Univ Castilla La Mancha, Dept Matemat Aplicada, E-13071 Ciudad Real, Spain
[3] Univ Nacl Educ Distancia, Dept Construcc & Fabricac, E-28040 Madrid, Spain
[4] Univ Rey Juan Carlos, Dept Bioquim Fisiol & Genet Mol, Madrid, Spain
关键词
advection-diffusion; generalized finite difference; FINITE-DIFFERENCE METHOD;
D O I
10.1080/00207160.2011.587872
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A comprehensive study is presented regarding the stability of the forward explicit integration technique with generalized finite-difference spatial discretizations, free of numerical diffusion, applied to the advection-diffusion equation. The modified equivalent partial differential equation approach is used to demonstrate that the approximation is free of numerical diffusion. Two-dimensional results are obtained using the von Neumann method of stability analysis. Numerical results are presented showing the accuracy obtained.
引用
收藏
页码:377 / 389
页数:13
相关论文
共 50 条
  • [1] Numerical Solution of Advection-Diffusion Equation Using Meshless Method of Lines
    Askari, Maysam
    Adibi, Hojatollah
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2017, 41 (A2): : 457 - 464
  • [2] A Meshless Method for Advection-Diffusion Problems
    Xue, Dangqin
    Zhao, Huanping
    Zhang, Jiaxi
    Hou, Shulin
    [J]. ENERGY DEVELOPMENT, PTS 1-4, 2014, 860-863 : 1594 - +
  • [3] Numerical simulation of fractional advection-diffusion equation: A method to anomalous diffusion
    Xia, Y.
    Wu, J. C.
    [J]. CALIBRATION AND RELIABILITY IN GROUNDWATER MODELING: MANAGING GROUNDWATER AND THE ENVIRONMENT, 2009, : 433 - 436
  • [4] Numerical Method for Fractional Advection-Diffusion Equation with Heredity
    Pimenov V.G.
    [J]. Journal of Mathematical Sciences, 2018, 230 (5) : 737 - 741
  • [5] Numerical solution of an advection-diffusion equation
    Solución numérica de una ecuación del tipo advección-difusión
    [J]. 1600, Centro de Informacion Tecnologica (25):
  • [6] A meshless method for solving the time fractional advection-diffusion equation with variable coefficients
    Mardani, A.
    Hooshmandasl, M. R.
    Heydari, M. H.
    Cattani, C.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (01) : 122 - 133
  • [7] Numerical Solution of Advection–Diffusion Equation Using Meshless Method of Lines
    Maysam Askari
    Hojatollah Adibi
    [J]. Iranian Journal of Science and Technology, Transactions A: Science, 2017, 41 : 457 - 464
  • [8] An RBF based meshless method for the distributed order time fractional advection-diffusion equation
    Liu, Quanzhen
    Mu, Shanjun
    Liu, Qingxia
    Liu, Baoquan
    Bi, Xiaolei
    Zhuang, Pinghui
    Li, Bochen
    Gao, Jian
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2018, 96 : 55 - 63
  • [9] A Meshfree Method for the Fractional Advection-Diffusion Equation
    Lian, Yanping
    Wagner, Gregory J.
    Liu, Wing Kam
    [J]. MESHFREE METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS VIII, 2017, 115 : 53 - 66
  • [10] DOMAIN DECOMPOSITION METHOD FOR THE ADVECTION-DIFFUSION EQUATION
    CHARTON, P
    NATAF, F
    ROGIER, F
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1991, 313 (09): : 623 - 626