An upwind numerical solution of nonlinear advection-diffusion problems with a moving heat source

被引:0
|
作者
Al-Khalidy, N [1 ]
机构
[1] Silesian Tech Univ, PL-44101 Gliwice, Poland
关键词
Welding; Welding Process; Welding Speed; Upwind Scheme; Nonlinear Boundary Condition;
D O I
10.1007/s002310050261
中图分类号
O414.1 [热力学];
学科分类号
摘要
In the present work, two-dimensional temperature variations and a position of a weldpool within a workpiece during keyhole plasma are welding are determined. The model allows to include temperature dependent thermal properties, variable welding speed, different keyhole radii and a nonlinear boundary condition of the third kind on the upper and the lower surfaces of the workpiece. The upwind scheme (donor cell method) is employed to present physically realistic numerical solutions. The obtained results can be used for controlling the plasma are welding process through the controlling of plasma jet diameter.
引用
收藏
页码:287 / 293
页数:7
相关论文
共 50 条
  • [21] Nonlocal nonlinear advection-diffusion equations
    Peter Constantin
    [J]. Chinese Annals of Mathematics, Series B, 2017, 38 : 281 - 292
  • [22] Nonlocal Nonlinear Advection-Diffusion Equations
    Constantin, Peter
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2017, 38 (01) : 281 - 292
  • [23] A Meshless Method for Advection-Diffusion Problems
    Xue, Dangqin
    Zhao, Huanping
    Zhang, Jiaxi
    Hou, Shulin
    [J]. ENERGY DEVELOPMENT, PTS 1-4, 2014, 860-863 : 1594 - +
  • [24] CHOOSING BUBBLES FOR ADVECTION-DIFFUSION PROBLEMS
    BREZZI, F
    RUSSO, A
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1994, 4 (04): : 571 - 587
  • [25] Nonlocal Nonlinear Advection-Diffusion Equations
    Peter CONSTANTIN
    [J]. Chinese Annals of Mathematics,Series B, 2017, (01) : 281 - 292
  • [26] Enhanced coercivity for pure advection and advection-diffusion problems
    Canuto, Claudio
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2006, 28 (2-3) : 223 - 244
  • [27] Variational principles for advection-diffusion problems
    Auchmuty, Giles
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (06) : 1882 - 1886
  • [28] A computational study of three numerical methods for some advection-diffusion problems
    Appadu, A. R.
    Djoko, J. K.
    Gidey, H. H.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2016, 272 : 629 - 647
  • [29] A Hyperbolic Theory for Advection-Diffusion Problems: Mathematical Foundations and Numerical Modeling
    Hector Gomez
    Ignasi Colominas
    Fermín Navarrina
    José París
    Manuel Casteleiro
    [J]. Archives of Computational Methods in Engineering, 2010, 17 : 191 - 211
  • [30] A Hyperbolic Theory for Advection-Diffusion Problems: Mathematical Foundations and Numerical Modeling
    Gomez, Hector
    Colominas, Ignasi
    Navarrina, Fermin
    Paris, Jose
    Casteleiro, Manuel
    [J]. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2010, 17 (02) : 191 - 211