ANDERSON ACCELERATION FOR NONLINEAR FINITE VOLUME SCHEME FOR ADVECTION-DIFFUSION PROBLEMS

被引:44
|
作者
Lipnikov, K. [1 ]
Svyatskiy, D. [1 ]
Vassilevski, Y. [2 ]
机构
[1] Los Alamos Natl Lab, Div Theoret, Appl Math & Plasma Phys Grp, Los Alamos, NM 87545 USA
[2] Russian Acad Sci, Inst Numer Math, Moscow 119333, Russia
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2013年 / 35卷 / 02期
关键词
advection-diffusion equation; finite volume method; discrete maximum principle; positivity preservation; Picard's method; Anderson acceleration; MAXIMUM-PRINCIPLES; EQUATIONS;
D O I
10.1137/120867846
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the solution of systems of nonlinear algebraic equations that appear in a positivity preserving finite volume scheme for steady-state advection-diffusion equations. We propose and analyze numerically an efficient strategy for accelerating the Picard method when it is applied to these systems. The strategy is based on the Anderson acceleration and the adaptive inexact solution of linear systems. We demonstrate its numerical robustness for three black-box preconditioners.
引用
收藏
页码:A1120 / A1136
页数:17
相关论文
共 50 条
  • [1] Application of Nonlinear Monotone Finite Volume Schemes to Advection-Diffusion Problems
    Vassilevski, Yuri
    Danilov, Alexander
    Kapyrin, Ivan
    Nikitin, Kirill
    [J]. FINITE VOLUMES FOR COMPLEX APPLICATIONS VI: PROBLEMS & PERSPECTIVES, VOLS 1 AND 2, 2011, 4 : 761 - 769
  • [2] A monotone finite volume scheme for advection-diffusion equations on distorted meshes
    Wang, Shuai
    Yuan, Guangwei
    Li, Yonghai
    Sheng, Zhiqiang
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2012, 69 (07) : 1283 - 1298
  • [3] Comparison of Galerkin and control volume finite element for advection-diffusion problems
    Martinez, MJ
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2006, 50 (03) : 347 - 376
  • [4] Error estimates for a finite volume scheme for advection-diffusion equations with rough coefficients
    Navarro-Fernandez, Victor
    Schlichting, Andre
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2023, 57 (04) : 2131 - 2158
  • [5] Acceleration of a domain decomposition method for advection-diffusion problems
    Lube, G
    Knopp, T
    Rapin, G
    [J]. DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING, 2005, 40 : 267 - 274
  • [6] A nonlinear subgrid method for advection-diffusion problems
    Santos, Isaac P.
    Almeida, Regina C.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (45-48) : 4771 - 4778
  • [7] A finite volume method for advection-diffusion problems in convection-dominated regimes
    Manzini, Gianmarco
    Russo, Alessandro
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 197 (13-16) : 1242 - 1261
  • [8] Discontinuous control-volume/finite-element method for advection-diffusion problems
    Stipcich, G.
    Piller, M.
    Pivetta, M.
    Zovatto, L.
    [J]. COMPUTERS & FLUIDS, 2011, 52 : 33 - 49
  • [9] Solution of the linear and nonlinear advection-diffusion problems on a sphere
    Skiba, Yuri N.
    Cruz-Rodriguez, Roberto C.
    Filatov, Denis M.
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2020, 36 (06) : 1922 - 1937
  • [10] A hybrid nonoverlapping domain decomposition scheme for advection dominated advection-diffusion problems
    Espedal, MS
    Tai, XC
    Yan, NN
    [J]. NUMERICAL ALGORITHMS, 1998, 18 (3-4) : 321 - 336