ANDERSON ACCELERATION FOR NONLINEAR FINITE VOLUME SCHEME FOR ADVECTION-DIFFUSION PROBLEMS

被引:44
|
作者
Lipnikov, K. [1 ]
Svyatskiy, D. [1 ]
Vassilevski, Y. [2 ]
机构
[1] Los Alamos Natl Lab, Div Theoret, Appl Math & Plasma Phys Grp, Los Alamos, NM 87545 USA
[2] Russian Acad Sci, Inst Numer Math, Moscow 119333, Russia
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2013年 / 35卷 / 02期
关键词
advection-diffusion equation; finite volume method; discrete maximum principle; positivity preservation; Picard's method; Anderson acceleration; MAXIMUM-PRINCIPLES; EQUATIONS;
D O I
10.1137/120867846
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the solution of systems of nonlinear algebraic equations that appear in a positivity preserving finite volume scheme for steady-state advection-diffusion equations. We propose and analyze numerically an efficient strategy for accelerating the Picard method when it is applied to these systems. The strategy is based on the Anderson acceleration and the adaptive inexact solution of linear systems. We demonstrate its numerical robustness for three black-box preconditioners.
引用
收藏
页码:A1120 / A1136
页数:17
相关论文
共 50 条