Characterizations of perturbations of spectra of 2 x 2 upper triangular operator matrices

被引:9
|
作者
Zhang, Shifang [2 ]
Wu, Zhaoqi [1 ]
机构
[1] Nanchang Univ, Dept Math, Nanchang 330031, Peoples R China
[2] Fujian Normal Univ, Sch Math & Comp Sci, Fuzhou 350007, Peoples R China
关键词
Hilbert space; Operator matrices; Spectra; APPROXIMATE POINT SPECTRA; BROWDER SPECTRUM; WEYLS THEOREM; INTERSECTION;
D O I
10.1016/j.jmaa.2012.03.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
When A epsilon B(H) and B epsilon B(K) are given, we denote by M-C the operator acting on the infinite dimensional separable Hilbert space H circle plus K of the form M-C = ((A)(0) (C)(B)). In this paper, we first give some necessary and sufficient conditions for M-C to be a left invertible operator (an upper semi-Weyl, upper semi-Fredholm) operator for some C epsilon B(K, H), which extend the corresponding results in Cao et al. (2006) [4], Cao and Meng (2005) [5], Hwang and Lee (2001) [12] and Li and Du (2006) [15]. Then we present some counter-examples. (C )2012 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:103 / 110
页数:8
相关论文
共 50 条
  • [41] Weyl Spectrum of Upper Triangular Operator Matrices
    Xiu Feng WU
    Jun Jie HUANG
    Acta Mathematica Sinica,English Series, 2020, 36 (07) : 783 - 796
  • [42] Property(R) for Upper Triangular Operator Matrices
    Li Li YANG
    Xiao Hong CAO
    Acta Mathematica Sinica,English Series, 2023, (03) : 523 - 532
  • [43] Drazin invertibility of upper triangular operator matrices
    Cvetkovic-Ilic, D. S.
    Pavlovic, V.
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (02): : 260 - 267
  • [44] Drazin invertibility of upper triangular operator matrices
    Boumazgour, Mohamed
    LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (05): : 627 - 634
  • [45] Property (R) for Upper Triangular Operator Matrices
    Yang, Li Li
    Cao, Xiao Hong
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2023, 39 (03) : 523 - 532
  • [46] Essential spectrum of upper triangular operator matrices
    Wu, Xiufeng
    Huang, Junjie
    ANNALS OF FUNCTIONAL ANALYSIS, 2020, 11 (03) : 780 - 798
  • [47] Fredholm complements of upper triangular operator matrices
    Qiu, Sinan
    Jiang, Lining
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2024, 18 (02)
  • [48] Weyl Spectrum of Upper Triangular Operator Matrices
    Wu, Xiu Feng
    Huang, Jun Jie
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2020, 36 (07) : 783 - 796
  • [49] ON THE DRAZIN INVERSE FOR UPPER TRIANGULAR OPERATOR MATRICES
    Zguitti, Hassane
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 2 (02): : 27 - 33
  • [50] Property (R) for Upper Triangular Operator Matrices
    Li Li Yang
    Xiao Hong Cao
    Acta Mathematica Sinica, English Series, 2023, 39 : 523 - 532