Characterizations of perturbations of spectra of 2 x 2 upper triangular operator matrices

被引:9
|
作者
Zhang, Shifang [2 ]
Wu, Zhaoqi [1 ]
机构
[1] Nanchang Univ, Dept Math, Nanchang 330031, Peoples R China
[2] Fujian Normal Univ, Sch Math & Comp Sci, Fuzhou 350007, Peoples R China
关键词
Hilbert space; Operator matrices; Spectra; APPROXIMATE POINT SPECTRA; BROWDER SPECTRUM; WEYLS THEOREM; INTERSECTION;
D O I
10.1016/j.jmaa.2012.03.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
When A epsilon B(H) and B epsilon B(K) are given, we denote by M-C the operator acting on the infinite dimensional separable Hilbert space H circle plus K of the form M-C = ((A)(0) (C)(B)). In this paper, we first give some necessary and sufficient conditions for M-C to be a left invertible operator (an upper semi-Weyl, upper semi-Fredholm) operator for some C epsilon B(K, H), which extend the corresponding results in Cao et al. (2006) [4], Cao and Meng (2005) [5], Hwang and Lee (2001) [12] and Li and Du (2006) [15]. Then we present some counter-examples. (C )2012 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:103 / 110
页数:8
相关论文
共 50 条
  • [31] Central polynomials with involution for the algebra of 2 x 2 upper triangular matrices
    Quispe Urure, Ronald Ismael
    Goncalves, Dimas Jose
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (10): : 1889 - 1901
  • [32] Polynomial identities for the Jordan algebra of 2 x 2 upper triangular matrices
    Goncalves, Dimas Jose
    Koshlukov, Plamen
    Salomao, Mateus Eduardo
    JOURNAL OF ALGEBRA, 2022, 593 : 477 - 506
  • [33] The Boundedness Below of 2 x 2 Upper Triangular Linear Relation Matrices
    Huo, Ran
    Du, Yanyan
    Huang, Junjie
    JOURNAL OF MATHEMATICAL STUDY, 2024, 57 (01) : 71 - 83
  • [34] PROPERTY (w) OF UPPER TRIANGULAR OPERATOR MATRICES
    Rashid, Mohammad H. M.
    TAMKANG JOURNAL OF MATHEMATICS, 2020, 51 (02): : 81 - 99
  • [35] Weyl Spectrum of Upper Triangular Operator Matrices
    Xiu Feng Wu
    Jun Jie Huang
    Acta Mathematica Sinica, English Series, 2020, 36 : 783 - 796
  • [36] The (Generalized) Weylness of Upper Triangular Operator Matrices
    J. Dong
    X. H. Cao
    Analysis Mathematica, 2020, 46 : 465 - 481
  • [37] Consistent invertibility of upper triangular operator matrices
    Hai, Guojun
    Chen, Alatancang
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 455 : 22 - 31
  • [38] Weyl Spectrum of Upper Triangular Operator Matrices
    Xiu Feng WU
    Jun Jie HUANG
    ActaMathematicaSinica, 2020, 36 (07) : 783 - 796
  • [39] Self-Adjoint Perturbations of Left (Right) Weyl Spectrum for Upper Triangular Operator Matrices
    Wu, Xiufeng
    Huang, Junjie
    Chen, Alatancang
    FILOMAT, 2022, 36 (13) : 4385 - 4395
  • [40] A novel numerical radius upper bounds for 2 x 2 operator matrices
    Al-Dolat, Mohammed
    Jaradat, Imad
    Al-Husban, Baraa
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (06): : 1173 - 1184