Characterizations of perturbations of spectra of 2 x 2 upper triangular operator matrices

被引:9
|
作者
Zhang, Shifang [2 ]
Wu, Zhaoqi [1 ]
机构
[1] Nanchang Univ, Dept Math, Nanchang 330031, Peoples R China
[2] Fujian Normal Univ, Sch Math & Comp Sci, Fuzhou 350007, Peoples R China
关键词
Hilbert space; Operator matrices; Spectra; APPROXIMATE POINT SPECTRA; BROWDER SPECTRUM; WEYLS THEOREM; INTERSECTION;
D O I
10.1016/j.jmaa.2012.03.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
When A epsilon B(H) and B epsilon B(K) are given, we denote by M-C the operator acting on the infinite dimensional separable Hilbert space H circle plus K of the form M-C = ((A)(0) (C)(B)). In this paper, we first give some necessary and sufficient conditions for M-C to be a left invertible operator (an upper semi-Weyl, upper semi-Fredholm) operator for some C epsilon B(K, H), which extend the corresponding results in Cao et al. (2006) [4], Cao and Meng (2005) [5], Hwang and Lee (2001) [12] and Li and Du (2006) [15]. Then we present some counter-examples. (C )2012 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:103 / 110
页数:8
相关论文
共 50 条
  • [21] Browder spectra of closed upper triangular operator matrices
    Bai, Qingmei
    Chen, Alatancang
    Gao, Jingying
    AIMS MATHEMATICS, 2024, 9 (02): : 5110 - 5121
  • [22] The semi-Fredholmness and property (ω) for 2x2 upper triangular operator matrices
    Dong, Jiong
    Cao, Xiaohong
    LINEAR & MULTILINEAR ALGEBRA, 2023, 72 (15): : 2489 - 2503
  • [23] Perturbations of spectra of operator matrices
    Djordjevic, DS
    JOURNAL OF OPERATOR THEORY, 2002, 48 (03) : 467 - 486
  • [24] Essential, Weyl and Browder spectra of unbounded upper triangular operator matrices
    Bai, Qingmei
    Huang, Junjie
    Chen, Alatancang
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (08): : 1583 - 1594
  • [25] GENERALIZED LEFT AND RIGHT WEYL SPECTRA OF UPPER TRIANGULAR OPERATOR MATRICES
    Hai, Guojun
    Cvetkovic-Ilic, Dragana S.
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2017, 32 : 41 - 50
  • [26] Relations in the semigroup of 2 x 2 upper-triangular matrices
    Esbelin, Henri-Alex
    Gutan, Marin
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2020, 30 (03) : 567 - 584
  • [27] Compact perturbations of both SVEP and Weyl's theorem for 3 x 3 upper triangular operator matrices
    Dong, Jiong
    Cao, Xiaohong
    LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (10): : 2020 - 2033
  • [28] On the invertibility of upper triangular operator matrices
    Hai, Guojun
    Chen, Alatancang
    LINEAR & MULTILINEAR ALGEBRA, 2014, 62 (04): : 538 - 547
  • [29] CFI upper triangular operator matrices
    Dong, Jiong
    Cao, Xiaohong
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (07): : 1217 - 1227
  • [30] Perturbation of spectra for a class of 2x2 operator matrices
    Alatancang
    Hou, Guo-lin
    Hai, Guo-jun
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2012, 28 (04): : 711 - 720