Property (R) for Upper Triangular Operator Matrices

被引:0
|
作者
Li Li Yang
Xiao Hong Cao
机构
[1] Shaanxi Normal University,School of Mathematics and Statistics
关键词
property (; ); upper triangular operator matrix; spectrum; 47A10; 47A11; 47A53;
D O I
暂无
中图分类号
学科分类号
摘要
Property (R) holds for an operator when the complement in the approximate point spectrum of the Browder essential approximate point spectrum coincides with the isolated points of the spectrum which are eigenvalues of finite multiplicity. Let A∈B(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\in\cal{B}(\cal{H})$$\end{document} and B∈B(K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B\in\cal{B}(\cal{K})$$\end{document}, where H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{H}$$\end{document} and K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{K}$$\end{document} are complex infinite dimensional separable Hilbert spaces. We denote by MC the operator acting on H⊕K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{H}\oplus\cal{K}$$\end{document} of the form MC=(AC0B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_C} = \left( {\begin{array}{*{20}{c}} A&C \\ 0&B \end{array}} \right)$$\end{document}. In this paper, we give a sufficient and necessary condition for MC ∈ (R) for all C∈B(K,H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C\in\cal{B}(\cal{K},\cal{H})$$\end{document}.
引用
收藏
页码:523 / 532
页数:9
相关论文
共 50 条