Property (R) for Upper Triangular Operator Matrices

被引:0
|
作者
Li Li Yang
Xiao Hong Cao
机构
[1] Shaanxi Normal University,School of Mathematics and Statistics
关键词
property (; ); upper triangular operator matrix; spectrum; 47A10; 47A11; 47A53;
D O I
暂无
中图分类号
学科分类号
摘要
Property (R) holds for an operator when the complement in the approximate point spectrum of the Browder essential approximate point spectrum coincides with the isolated points of the spectrum which are eigenvalues of finite multiplicity. Let A∈B(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\in\cal{B}(\cal{H})$$\end{document} and B∈B(K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B\in\cal{B}(\cal{K})$$\end{document}, where H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{H}$$\end{document} and K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{K}$$\end{document} are complex infinite dimensional separable Hilbert spaces. We denote by MC the operator acting on H⊕K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{H}\oplus\cal{K}$$\end{document} of the form MC=(AC0B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_C} = \left( {\begin{array}{*{20}{c}} A&C \\ 0&B \end{array}} \right)$$\end{document}. In this paper, we give a sufficient and necessary condition for MC ∈ (R) for all C∈B(K,H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C\in\cal{B}(\cal{K},\cal{H})$$\end{document}.
引用
收藏
页码:523 / 532
页数:9
相关论文
共 50 条
  • [21] Drazin invertibility of upper triangular operator matrices
    Boumazgour, Mohamed
    LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (05): : 627 - 634
  • [22] Essential spectrum of upper triangular operator matrices
    Wu, Xiufeng
    Huang, Junjie
    ANNALS OF FUNCTIONAL ANALYSIS, 2020, 11 (03) : 780 - 798
  • [23] Fredholm complements of upper triangular operator matrices
    Qiu, Sinan
    Jiang, Lining
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2024, 18 (02)
  • [24] Weyl Spectrum of Upper Triangular Operator Matrices
    Wu, Xiu Feng
    Huang, Jun Jie
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2020, 36 (07) : 783 - 796
  • [25] ON THE DRAZIN INVERSE FOR UPPER TRIANGULAR OPERATOR MATRICES
    Zguitti, Hassane
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 2 (02): : 27 - 33
  • [26] The (Generalized) Weylness of Upper Triangular Operator Matrices
    Dong, J.
    Cao, X. H.
    ANALYSIS MATHEMATICA, 2020, 46 (03) : 465 - 481
  • [27] Essential spectrum of upper triangular operator matrices
    Xiufeng Wu
    Junjie Huang
    Annals of Functional Analysis, 2020, 11 : 780 - 798
  • [28] Riesz points of upper triangular operator matrices
    Barnes, BA
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (05) : 1343 - 1347
  • [29] Spectral property of upper triangular relation matrices
    Du, Yanyan
    Huang, Junjie
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (08): : 1526 - 1542
  • [30] The semi-Fredholmness and property (ω) for 2x2 upper triangular operator matrices
    Dong, Jiong
    Cao, Xiaohong
    LINEAR & MULTILINEAR ALGEBRA, 2023, 72 (15): : 2489 - 2503