Property (R) for Upper Triangular Operator Matrices

被引:0
|
作者
Li Li Yang
Xiao Hong Cao
机构
[1] Shaanxi Normal University,School of Mathematics and Statistics
关键词
property (; ); upper triangular operator matrix; spectrum; 47A10; 47A11; 47A53;
D O I
暂无
中图分类号
学科分类号
摘要
Property (R) holds for an operator when the complement in the approximate point spectrum of the Browder essential approximate point spectrum coincides with the isolated points of the spectrum which are eigenvalues of finite multiplicity. Let A∈B(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\in\cal{B}(\cal{H})$$\end{document} and B∈B(K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B\in\cal{B}(\cal{K})$$\end{document}, where H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{H}$$\end{document} and K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{K}$$\end{document} are complex infinite dimensional separable Hilbert spaces. We denote by MC the operator acting on H⊕K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{H}\oplus\cal{K}$$\end{document} of the form MC=(AC0B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_C} = \left( {\begin{array}{*{20}{c}} A&C \\ 0&B \end{array}} \right)$$\end{document}. In this paper, we give a sufficient and necessary condition for MC ∈ (R) for all C∈B(K,H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C\in\cal{B}(\cal{K},\cal{H})$$\end{document}.
引用
收藏
页码:523 / 532
页数:9
相关论文
共 50 条
  • [41] Spectra of 3 × 3 upper triangular operator matrices
    Xiufeng Wu
    Junjie Huang
    Alatancang Chen
    Functional Analysis and Its Applications, 2017, 51 : 135 - 143
  • [42] Fredholm consistency of upper-triangular operator matrices
    Cvetkovic-Ilic, Dragana S.
    JOURNAL OF SPECTRAL THEORY, 2017, 7 (04) : 1023 - 1038
  • [43] Generalized Weyl Spectrum of Upper Triangular Operator Matrices
    Li, Guangfang
    Hai, Guojun
    Chen, Alatancang
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2015, 12 (03) : 1059 - 1067
  • [44] Browder spectra of closed upper triangular operator matrices
    Bai, Qingmei
    Chen, Alatancang
    Gao, Jingying
    AIMS MATHEMATICS, 2024, 9 (02): : 5110 - 5121
  • [45] Variations of Weyl Type Theorems for Upper Triangular Operator Matrices
    Mohammad H. M. Rashid
    Acta Mathematica Vietnamica, 2021, 46 : 719 - 735
  • [46] THE SPECTRAL EQUALITY FOR UPPER TRIANGULAR OPERATOR MATRICES WITH UNBOUNDED ENTRIES
    Wu, Deyu
    Chen, Alatancang
    Tam, Tin-Yau
    OPERATORS AND MATRICES, 2017, 11 (02): : 505 - 517
  • [47] Subscalarity, Invariant, and Hyperinvariant Subspaces for Upper Triangular Operator Matrices
    Salah Mecheri
    Bulletin of the Malaysian Mathematical Sciences Society, 2018, 41 : 1085 - 1104
  • [48] Spectra of 2 x 2 Upper Triangular Operator Matrices
    Huang, Junjie
    Liu, Aichun
    Chen, Alatancang
    FILOMAT, 2016, 30 (13) : 3587 - 3599
  • [49] Upper Triangular Operator Matrices, SVEP and Browder, Weyl Theorems
    Duggal, B. P.
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2009, 63 (01) : 17 - 28
  • [50] Upper Triangular Operator Matrices, SVEP and Browder, Weyl Theorems
    B. P. Duggal
    Integral Equations and Operator Theory, 2009, 63 : 17 - 28