ON LOWER BOUNDS FOR ERDOS-SZEKERES PRODUCTS

被引:1
|
作者
Billsborough, C. [1 ]
Freedman, M.
Hart, S.
Kowalsky, G.
Lubinsky, D.
Pomeranz, A.
Sammel, A.
机构
[1] Georgia Tech, Sch Math, Atlanta, GA 30332 USA
关键词
Erdos-Szekeres products; polynomials; SUDLER PRODUCT; POLYNOMIALS; GROWTH; SINES;
D O I
10.1090/proc/15503
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let {s(j)}(j=1)(n) be positive integers. We show that for any 1 <= L <= n, parallel to Pi(n)(j=1)(1 - z(sj))parallel to(L infinity(vertical bar z vertical bar=1)) >= exp(1/2e L/(s(1)s(2) ... s(L))(1/L)). In particular, this gives geometric growth if a positive proportion of the {s(j)} are bounded. We also show that when the {s(j)} grow regularly and faster than j (log j)(2+epsilon), some epsilon > 0, then the norms grow faster than exp ((log n)(1+delta)) for some delta > 0.
引用
收藏
页码:4233 / 4246
页数:14
相关论文
共 50 条
  • [21] Erdos-Szekeres Theorems for Families of Convex Sets
    Holmsen, Andreas F.
    NEW TRENDS IN INTUITIVE GEOMETRY, 2018, 27 : 201 - 218
  • [22] Higher-order Erdos-Szekeres theorems
    Elias, Marek
    Matousek, Jiri
    ADVANCES IN MATHEMATICS, 2013, 244 : 1 - 15
  • [23] An Erdos-Szekeres type problem for interior points
    Wei, Xianglin
    Ding, Ren
    SURVEYS ON DISCRETE AND COMPUTATIONAL GEOMETRY: TWENTY YEARS LATER, 2008, 453 : 515 - 528
  • [24] Erdos-Szekeres Theorem for k-Flats
    Barany, Imre
    Kalai, Gil
    Por, Attila
    DISCRETE & COMPUTATIONAL GEOMETRY, 2023, 69 (04) : 1232 - 1240
  • [25] A partitioned version of the Erdos-Szekeres theorem for quadrilaterals
    Pór, A
    DISCRETE & COMPUTATIONAL GEOMETRY, 2003, 30 (02) : 321 - 336
  • [26] AN EXTENSION OF THE ERDOS-SZEKERES THEOREM ON LARGE ANGLES
    BARANY, I
    COMBINATORICA, 1987, 7 (02) : 161 - 169
  • [27] Erdos-Szekeres theorem with forbidden order types
    Károlyi, G
    Solymosi, J
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (03) : 455 - 465
  • [28] A note on the Erdos-Szekeres Theorem in two dimensions
    Lichev, Lyuben
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (02):
  • [29] A multidimensional generalization of the Erdos-Szekeres lemma on monotone subsequences
    Szabó, T
    Tardos, G
    COMBINATORICS PROBABILITY & COMPUTING, 2001, 10 (06): : 557 - 565
  • [30] Another abstraction of the Erdos-Szekeres Happy End Theorem
    Alon, Noga
    Chiniforooshan, Ehsan
    Chvatal, Vasek
    Genest, Francois
    ELECTRONIC JOURNAL OF COMBINATORICS, 2010, 17 (01):