ON LOWER BOUNDS FOR ERDOS-SZEKERES PRODUCTS

被引:1
|
作者
Billsborough, C. [1 ]
Freedman, M.
Hart, S.
Kowalsky, G.
Lubinsky, D.
Pomeranz, A.
Sammel, A.
机构
[1] Georgia Tech, Sch Math, Atlanta, GA 30332 USA
关键词
Erdos-Szekeres products; polynomials; SUDLER PRODUCT; POLYNOMIALS; GROWTH; SINES;
D O I
10.1090/proc/15503
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let {s(j)}(j=1)(n) be positive integers. We show that for any 1 <= L <= n, parallel to Pi(n)(j=1)(1 - z(sj))parallel to(L infinity(vertical bar z vertical bar=1)) >= exp(1/2e L/(s(1)s(2) ... s(L))(1/L)). In particular, this gives geometric growth if a positive proportion of the {s(j)} are bounded. We also show that when the {s(j)} grow regularly and faster than j (log j)(2+epsilon), some epsilon > 0, then the norms grow faster than exp ((log n)(1+delta)) for some delta > 0.
引用
收藏
页码:4233 / 4246
页数:14
相关论文
共 50 条
  • [41] Problems and results around the Erdos-Szekeres convex polygon theorem
    Bárány, I
    Károlyi, G
    DISCRETE AND COMPUTATIONAL GEOMETRY, 2001, 2098 : 91 - 105
  • [42] Chromatic variants of the Erdos-Szekeres theorem on points in convex position
    Devillers, O
    Hurtado, F
    Károlyi, G
    Seara, C
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2003, 26 (03): : 193 - 208
  • [43] Computer solution to the 17-point Erdos-Szekeres problem
    Szekeres, George
    Peters, Lindsay
    ANZIAM JOURNAL, 2006, 48 : 151 - 164
  • [44] THE ERDOS-SZEKERES PROBLEM FOR NON-CROSSING CONVEX SETS
    Dobbins, Michael Gene
    Holmsen, Andreas
    Hubard, Alfredo
    MATHEMATIKA, 2014, 60 (02) : 463 - 484
  • [45] Ramsey-remainder for convex sets and the Erdos-Szekeres theorem
    Károlyi, G
    DISCRETE APPLIED MATHEMATICS, 2001, 109 (1-2) : 163 - 175
  • [46] A GENERALIZATION OF THE ERDOS-SZEKERES CONVEX N-GON THEOREM
    BISZTRICZKY, T
    TOTH, GF
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1989, 395 : 167 - 170
  • [47] On the Computational Complexity of Erdos-Szekeres and Related Problems in R3
    Giannopoulos, Panos
    Knauer, Christian
    Werner, Daniel
    ALGORITHMS - ESA 2013, 2013, 8125 : 541 - 552
  • [48] SOME ERDOS-SZEKERES TYPE RESULTS ABOUT POINTS IN-SPACE
    BISZTRICZKY, T
    SOLTAN, V
    MONATSHEFTE FUR MATHEMATIK, 1994, 118 (1-2): : 33 - 40
  • [49] Ramsey Theory, integer partitions and a new proof of the Erdos-Szekeres Theorem
    Moshkovitz, Guy
    Shapira, Asaf
    ADVANCES IN MATHEMATICS, 2014, 262 : 1107 - 1129
  • [50] A NEW PROOF OF THE ERDOS-SZEKERES CONVEX K-GON RESULT
    JOHNSON, S
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1986, 42 (02) : 318 - 319