ON LOWER BOUNDS FOR ERDOS-SZEKERES PRODUCTS

被引:1
|
作者
Billsborough, C. [1 ]
Freedman, M.
Hart, S.
Kowalsky, G.
Lubinsky, D.
Pomeranz, A.
Sammel, A.
机构
[1] Georgia Tech, Sch Math, Atlanta, GA 30332 USA
关键词
Erdos-Szekeres products; polynomials; SUDLER PRODUCT; POLYNOMIALS; GROWTH; SINES;
D O I
10.1090/proc/15503
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let {s(j)}(j=1)(n) be positive integers. We show that for any 1 <= L <= n, parallel to Pi(n)(j=1)(1 - z(sj))parallel to(L infinity(vertical bar z vertical bar=1)) >= exp(1/2e L/(s(1)s(2) ... s(L))(1/L)). In particular, this gives geometric growth if a positive proportion of the {s(j)} are bounded. We also show that when the {s(j)} grow regularly and faster than j (log j)(2+epsilon), some epsilon > 0, then the norms grow faster than exp ((log n)(1+delta)) for some delta > 0.
引用
收藏
页码:4233 / 4246
页数:14
相关论文
共 50 条