Enumerating all Hamilton Cycles and Bounding the Number of Hamilton Cycles in 3-Regular Graphs

被引:0
|
作者
Gebauer, Heidi [1 ]
机构
[1] ETH, Inst Theoret Comp Sci, CH-8092 Zurich, Switzerland
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2011年 / 18卷 / 01期
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe an algorithm which enumerates all Hamilton cycles of a given 3-regular n-vertex graph in time O(1.276(n)), improving on Eppstein's previous bound. The resulting new upper bound of O(1.276n) for the maximum number of Hamilton cycles in 3-regular n-vertex graphs gets close to the best known lower bound of Omega(1.259(n)). Our method differs from Eppstein's in that he considers in each step a new graph and modifies it, while we fix (at the very beginning) one Hamilton cycle C and then proceed around C, successively producing partial Hamilton cycles.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] UNIQUENESS OF MAXIMAL DOMINATING CYCLES IN 3-REGULAR GRAPHS AND OF HAMILTONIAN CYCLES IN 4-REGULAR GRAPHS
    FLEISCHNER, H
    JOURNAL OF GRAPH THEORY, 1994, 18 (05) : 449 - 459
  • [22] THE NUMBER OF CYCLES IN A HAMILTON GRAPH
    SHI, YB
    DISCRETE MATHEMATICS, 1994, 133 (1-3) : 249 - 257
  • [23] Loose Hamilton Cycles in Regular Hypergraphs
    Dudek, Andrzej
    Frieze, Alan
    Rucinski, Andrzej
    Sileikis, Matas
    COMBINATORICS PROBABILITY & COMPUTING, 2015, 24 (01): : 179 - 194
  • [24] Collapsible graphs and Hamilton cycles of line graphs
    Li, Xiangwen
    Xiong, Yan
    DISCRETE APPLIED MATHEMATICS, 2015, 194 : 132 - 142
  • [25] EDGE-DISJOINT HAMILTON CYCLES IN REGULAR GRAPHS OF LARGE DEGREE
    JACKSON, B
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1979, 19 (FEB): : 13 - 16
  • [26] HAMILTON CYCLES IN ALMOST-REGULAR 2-CONNECTED GRAPHS
    JACKSON, B
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1993, 57 (01) : 77 - 87
  • [27] Hamilton cycles in Trivalent Cayley graphs
    Wagh, MD
    Mo, JC
    INFORMATION PROCESSING LETTERS, 1996, 60 (04) : 177 - 181
  • [28] COLORFUL HAMILTON CYCLES IN RANDOM GRAPHS
    Chakraborti, Debsoumya
    Frieze, Alan M.
    Hasabnis, Mihir
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2023, 37 (01) : 51 - 64
  • [29] HAMILTON CYCLES IN RANDOM GEOMETRIC GRAPHS
    Balogh, Jozsef
    Bollobas, Bela
    Krivelevich, Michael
    Muller, Tobias
    Walters, Mark
    ANNALS OF APPLIED PROBABILITY, 2011, 21 (03): : 1053 - 1072
  • [30] Hamilton cycles in tensor product of graphs
    Discrete Math, 1-3 (1-13):