Enumerating all Hamilton Cycles and Bounding the Number of Hamilton Cycles in 3-Regular Graphs

被引:0
|
作者
Gebauer, Heidi [1 ]
机构
[1] ETH, Inst Theoret Comp Sci, CH-8092 Zurich, Switzerland
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2011年 / 18卷 / 01期
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe an algorithm which enumerates all Hamilton cycles of a given 3-regular n-vertex graph in time O(1.276(n)), improving on Eppstein's previous bound. The resulting new upper bound of O(1.276n) for the maximum number of Hamilton cycles in 3-regular n-vertex graphs gets close to the best known lower bound of Omega(1.259(n)). Our method differs from Eppstein's in that he considers in each step a new graph and modifies it, while we fix (at the very beginning) one Hamilton cycle C and then proceed around C, successively producing partial Hamilton cycles.
引用
收藏
页数:28
相关论文
共 50 条
  • [41] Powers of Hamilton Cycles in Pseudorandom Graphs
    Allen, Peter
    Boettcher, Julia
    Han, Hiep
    Kohayakawa, Yoshiharu
    Person, Yury
    LATIN 2014: THEORETICAL INFORMATICS, 2014, 8392 : 355 - 366
  • [42] Hamilton cycles in generalized Mycielski graphs
    Panneerselvam, L.
    Ganesamurthy, S.
    Muthusamy, A.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (07)
  • [43] Hamilton cycles in tensor product of graphs
    Balakrishnan, R
    Paulraja, P
    DISCRETE MATHEMATICS, 1998, 186 (1-3) : 1 - 13
  • [44] Hamilton cycles in strong products of graphs
    Král, D
    Maxová, J
    Sámal, R
    Podbrdsky, P
    JOURNAL OF GRAPH THEORY, 2005, 48 (04) : 299 - 321
  • [45] Edge disjoint Hamilton cycles in graphs
    Li, GJ
    JOURNAL OF GRAPH THEORY, 2000, 35 (01) : 8 - 20
  • [46] Hamilton cycles in random lifts of graphs
    Luczak, Tomasz
    Witkowski, Lukasz
    Witkowski, Marcin
    EUROPEAN JOURNAL OF COMBINATORICS, 2015, 49 : 105 - 116
  • [47] A survey on Hamilton cycles in directed graphs
    Kuehn, Daniela
    Osthus, Deryk
    EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (05) : 750 - 766
  • [48] Hamilton Cycles in Restricted Rotator Graphs
    Stevens, Brett
    Williams, Aaron
    COMBINATORIAL ALGORITHMS, 2011, 7056 : 324 - 336
  • [49] HAMILTON CYCLES IN BIDIRECTED COMPLETE GRAPHS
    Busch, Arthur
    Mutar, Mohammed A.
    Slilaty, Daniel
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2022, 17 (02) : 137 - 149
  • [50] On Covering Expander Graphs by Hamilton Cycles
    Glebov, Roman
    Krivelevich, Michael
    Szabo, Tibor
    RANDOM STRUCTURES & ALGORITHMS, 2014, 44 (02) : 183 - 200