Enumerating all Hamilton Cycles and Bounding the Number of Hamilton Cycles in 3-Regular Graphs

被引:0
|
作者
Gebauer, Heidi [1 ]
机构
[1] ETH, Inst Theoret Comp Sci, CH-8092 Zurich, Switzerland
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2011年 / 18卷 / 01期
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe an algorithm which enumerates all Hamilton cycles of a given 3-regular n-vertex graph in time O(1.276(n)), improving on Eppstein's previous bound. The resulting new upper bound of O(1.276n) for the maximum number of Hamilton cycles in 3-regular n-vertex graphs gets close to the best known lower bound of Omega(1.259(n)). Our method differs from Eppstein's in that he considers in each step a new graph and modifies it, while we fix (at the very beginning) one Hamilton cycle C and then proceed around C, successively producing partial Hamilton cycles.
引用
收藏
页数:28
相关论文
共 50 条
  • [31] COMPATIBLE HAMILTON CYCLES IN DIRAC GRAPHS
    Krivelevich, Michael
    Lee, Choongbum
    Sudakov, Benny
    COMBINATORICA, 2017, 37 (04) : 697 - 732
  • [32] Hamilton cycles in circuit graphs of matroids
    Li, Ping
    Liu, Guizhen
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (04) : 654 - 659
  • [33] LONGEST CYCLES IN 3-CONNECTED 3-REGULAR GRAPHS
    BONDY, JA
    SIMONOVITS, M
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1980, 32 (04): : 987 - 992
  • [34] Hamilton cycles in random graphs and directed graphs
    Cooper, C
    Frieze, A
    RANDOM STRUCTURES & ALGORITHMS, 2000, 16 (04) : 369 - 401
  • [35] POWERS OF HAMILTON CYCLES IN PSEUDORANDOM GRAPHS
    Allen, Peter
    Bottcher, Julia
    Han, Hiep
    Kohayakawa, Yoshiharu
    Person, Yury
    COMBINATORICA, 2017, 37 (04) : 573 - 616
  • [36] ON MATCHINGS AND HAMILTON CYCLES IN RANDOM GRAPHS
    FRIEZE, AM
    SURVEYS IN COMBINATORICS, 1989, 1989, 141 : 84 - 114
  • [37] LIFTING HAMILTON CYCLES OF QUOTIENT GRAPHS
    ALSPACH, B
    DISCRETE MATHEMATICS, 1989, 78 (1-2) : 25 - 36
  • [38] HAMILTON CYCLES AND PATHS IN BUTTERFLY GRAPHS
    WONG, SA
    NETWORKS, 1995, 26 (03) : 145 - 150
  • [39] Compatible Hamilton Cycles in Random Graphs
    Krivelevich, Michael
    Lee, Choongbum
    Sudakov, Benny
    RANDOM STRUCTURES & ALGORITHMS, 2016, 49 (03) : 533 - 557
  • [40] Powers of Hamilton cycles in pseudorandom graphs
    Peter Allen
    Julia Böttcher
    Hiệp Hàn
    Yoshiharu Kohayakawa
    Yury Person
    Combinatorica, 2017, 37 : 573 - 616