HAMILTON CYCLES IN RANDOM GEOMETRIC GRAPHS

被引:23
|
作者
Balogh, Jozsef [1 ]
Bollobas, Bela [3 ]
Krivelevich, Michael [2 ]
Muller, Tobias [4 ]
Walters, Mark [5 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[2] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
[3] Univ Cambridge, Dept Pure Math & Math Stat, Cambridge CB3 0WB, England
[4] Ctr Wiskunde & Informat, NL-1090 GB Amsterdam, Netherlands
[5] Univ London, Sch Math Sci, London E1 4NS, England
来源
ANNALS OF APPLIED PROBABILITY | 2011年 / 21卷 / 03期
基金
美国国家科学基金会; 以色列科学基金会;
关键词
Hamilton cycles; random geometric graphs; CONNECTIVITY;
D O I
10.1214/10-AAP718
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove that, in the Gilbert model for a random geometric graph, almost every graph becomes Hamiltonian exactly when it first becomes 2-connected. This answers a question of Penrose. We also show that in the k-nearest neighbor model, there is a constant. such that almost every kappa-connected graph has a Hamilton cycle.
引用
收藏
页码:1053 / 1072
页数:20
相关论文
共 50 条
  • [1] Rainbow Hamilton cycles in random geometric graphs
    Frieze, Alan
    Perez-Gimenez, Xavier
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2024, 64 (04) : 878 - 898
  • [2] Powers of Hamilton cycles in dense graphs perturbed by a random geometric graph
    Diaz, Alberto Espuny
    Hyde, Joseph
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2024, 121
  • [3] Powers of Hamilton cycles in random graphs and tight Hamilton cycles in random hypergraphs
    Nenadov, Rajko
    Skoric, Nemanja
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2019, 54 (01) : 187 - 208
  • [4] Hamilton cycles in random graphs and directed graphs
    Cooper, C
    Frieze, A
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2000, 16 (04) : 369 - 401
  • [5] COLORFUL HAMILTON CYCLES IN RANDOM GRAPHS
    Chakraborti, Debsoumya
    Frieze, Alan M.
    Hasabnis, Mihir
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2023, 37 (01) : 51 - 64
  • [6] Rainbow hamilton cycles in random graphs
    Frieze, Alan
    Loh, Po-Shen
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2014, 44 (03) : 328 - 354
  • [7] PANCYCLIC HAMILTON CYCLES IN RANDOM GRAPHS
    COOPER, C
    [J]. DISCRETE MATHEMATICS, 1991, 91 (02) : 141 - 148
  • [8] Hamilton cycles in random lifts of graphs
    Burgin, K.
    Chebolu, P.
    Cooper, C.
    Frieze, A. M.
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2006, 27 (08) : 1282 - 1293
  • [9] Compatible Hamilton Cycles in Random Graphs
    Krivelevich, Michael
    Lee, Choongbum
    Sudakov, Benny
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2016, 49 (03) : 533 - 557
  • [10] ON MATCHINGS AND HAMILTON CYCLES IN RANDOM GRAPHS
    FRIEZE, AM
    [J]. SURVEYS IN COMBINATORICS, 1989, 1989, 141 : 84 - 114