Powers of Hamilton cycles in dense graphs perturbed by a random geometric graph

被引:0
|
作者
Diaz, Alberto Espuny [1 ]
Hyde, Joseph [2 ]
机构
[1] Tech Univ Ilmenau, Inst Math, Weimarer Str 25, D-98684 Ilmenau, Germany
[2] Univ Victoria, Math & Stat, David Turpin Bldg, Victoria, BC V8W 2Y2, Canada
基金
英国科研创新办公室; 欧洲研究理事会;
关键词
RANDOM EDGES; THRESHOLD; SQUARE;
D O I
10.1016/j.ejc.2023.103848
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph obtained as the union of some n-vertex graph H-n with minimum degree delta(H-n) >= alpha n and a d-dimensional random geometric graph G(d)(n,r). We investigate under which conditions for r the graph G will a.a.s. contain the kth power of a Hamilton cycle, for any choice of H-n. We provide asymptotically optimal conditions for r for all values of alpha, d and k. This has applications in the containment of other spanning structures, such as F-factors.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Compatible powers of Hamilton cycles in dense graphs
    Cheng, Xiaohan
    Hu, Jie
    Yang, Donglei
    [J]. JOURNAL OF GRAPH THEORY, 2024, : 257 - 273
  • [2] Powers of Hamilton cycles in random graphs and tight Hamilton cycles in random hypergraphs
    Nenadov, Rajko
    Skoric, Nemanja
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2019, 54 (01) : 187 - 208
  • [3] HAMILTON CYCLES IN RANDOM GEOMETRIC GRAPHS
    Balogh, Jozsef
    Bollobas, Bela
    Krivelevich, Michael
    Muller, Tobias
    Walters, Mark
    [J]. ANNALS OF APPLIED PROBABILITY, 2011, 21 (03): : 1053 - 1072
  • [4] Rainbow Hamilton cycles in random geometric graphs
    Frieze, Alan
    Perez-Gimenez, Xavier
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2024, 64 (04) : 878 - 898
  • [5] Disjoint Hamilton Cycles in the Random Geometric Graph
    Mueller, Tobias
    Perez-Gimenez, Xavier
    Wormald, Nicholas
    [J]. JOURNAL OF GRAPH THEORY, 2011, 68 (04) : 299 - 322
  • [6] Hamiltonicity of graphs perturbed by a random geometric graph
    Diaz, Alberto Espuny
    [J]. JOURNAL OF GRAPH THEORY, 2023, 103 (01) : 12 - 22
  • [7] RAINBOW HAMILTON CYCLES IN RANDOMLY COLORED RANDOMLY PERTURBED DENSE GRAPHS
    Aigner-Horev, Elad
    Hefetz, Dan
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2021, 35 (03) : 1569 - 1577
  • [8] Rainbow perfect matchings and Hamilton cycles in the random geometric graph
    Bal, Deepak
    Bennett, Patrick
    Perez-Gimenez, Xavier
    Pralat, Pawel
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2017, 51 (04) : 587 - 606
  • [9] POWERS OF HAMILTON CYCLES IN PSEUDORANDOM GRAPHS
    Allen, Peter
    Bottcher, Julia
    Han, Hiep
    Kohayakawa, Yoshiharu
    Person, Yury
    [J]. COMBINATORICA, 2017, 37 (04) : 573 - 616
  • [10] Powers of Hamilton Cycles in Pseudorandom Graphs
    Allen, Peter
    Boettcher, Julia
    Han, Hiep
    Kohayakawa, Yoshiharu
    Person, Yury
    [J]. LATIN 2014: THEORETICAL INFORMATICS, 2014, 8392 : 355 - 366