RAINBOW HAMILTON CYCLES IN RANDOMLY COLORED RANDOMLY PERTURBED DENSE GRAPHS

被引:4
|
作者
Aigner-Horev, Elad [1 ]
Hefetz, Dan [1 ]
机构
[1] Ariel Univ, Dept Math & Comp Sci, Ariel, Israel
关键词
Hamilton cycle; perturbed model; rainbow; random graph; RANDOM EDGES;
D O I
10.1137/20M1332992
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given an n-vertex graph H with minimum degree at least dn for some fixed d > 0, the distribution H boolean OR G(n, p) over the supergraphs of H is referred to as a (random) perturbation of H. We consider the distribution of edge-colored graphs arising from assigning each edge of the random perturbation H boolean OR G(n, p) a color, chosen independently and uniformly at random from a set of colors of size r := r(n). We prove that edge-colored graphs which are generated in this manner asymptotically almost surely admit rainbow Hamilton cycles whenever the edge-density of the random perturbation satisfies p := p(n) >= C/n for some fixed C > 0 and r = (1 + o(1))n. The number of colors used is clearly asymptotically best possible. In particular, this improves on a recent result of Anastos and Frieze [J. Graph Theory, 92 (2019), pp. 405-414] in this regard. As an intermediate result, which may be of independent interest, we prove that randomly edge-colored sparse pseudorandom graphs asymptotically almost surely admit an almost spanning rainbow path.
引用
收藏
页码:1569 / 1577
页数:9
相关论文
共 50 条
  • [1] LARGE RAINBOW CLIQUES IN RANDOMLY PERTURBED DENSE GRAPHS
    Aigner-Horev, Elad
    Danon, Oran
    Hefetz, Dan
    Letzter, Shoham
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2022, 36 (04) : 2975 - 2994
  • [2] Small rainbow cliques in randomly perturbed dense graphs
    Aigner-Horev, Elad
    Danon, Oran
    Hefetz, Dan
    Letzter, Shoham
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2022, 101
  • [3] Rainbow connectivity of randomly perturbed graphs
    Balogh, Jozsef
    Finlay, John
    Palmer, Cory
    [J]. JOURNAL OF GRAPH THEORY, 2023,
  • [4] Tilings in Randomly Perturbed Dense Graphs
    Balogh, Jozsef
    Treglown, Andrew
    Wagner, Adam Zsolt
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2019, 28 (02): : 159 - 176
  • [5] The square of a Hamilton cycle in randomly perturbed graphs
    Boettcher, Julia
    Parczyk, Olaf
    Sgueglia, Amedeo
    Skokan, Jozef
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2024, 65 (02) : 342 - 386
  • [6] How many randomly colored edges make a randomly colored dense graph rainbow Hamiltonian or rainbow connected?
    Anastos, Michael
    Frieze, Alan
    [J]. JOURNAL OF GRAPH THEORY, 2019, 92 (04) : 405 - 414
  • [7] Hamilton l-cycles in randomly perturbed hypergraphs
    McDowell, Andrew
    Mycroft, Richard
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (04):
  • [8] Powers of tight Hamilton cycles in randomly perturbed hypergraphs
    Bedenknecht, Wiebke
    Han, Jie
    Kohayakawa, Yoshiharu
    Mota, Guilherme O.
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2019, 55 (04) : 795 - 807
  • [9] On powers of tight Hamilton cycles in randomly perturbed hypergraphs
    Chang, Yulin
    Han, Jie
    Thoma, Lubos
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2023, 63 (03) : 591 - 609
  • [10] Ramsey properties of randomly perturbed graphs: cliques and cycles
    Das, Shagnik
    Treglown, Andrew
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2020, 29 (06): : 830 - 867