Powers of Hamilton cycles in dense graphs perturbed by a random geometric graph

被引:0
|
作者
Diaz, Alberto Espuny [1 ]
Hyde, Joseph [2 ]
机构
[1] Tech Univ Ilmenau, Inst Math, Weimarer Str 25, D-98684 Ilmenau, Germany
[2] Univ Victoria, Math & Stat, David Turpin Bldg, Victoria, BC V8W 2Y2, Canada
基金
英国科研创新办公室; 欧洲研究理事会;
关键词
RANDOM EDGES; THRESHOLD; SQUARE;
D O I
10.1016/j.ejc.2023.103848
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph obtained as the union of some n-vertex graph H-n with minimum degree delta(H-n) >= alpha n and a d-dimensional random geometric graph G(d)(n,r). We investigate under which conditions for r the graph G will a.a.s. contain the kth power of a Hamilton cycle, for any choice of H-n. We provide asymptotically optimal conditions for r for all values of alpha, d and k. This has applications in the containment of other spanning structures, such as F-factors.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Hamilton cycles in random lifts of graphs
    Luczak, Tomasz
    Witkowski, Lukasz
    Witkowski, Marcin
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2015, 49 : 105 - 116
  • [22] ON THE NUMBER OF HAMILTON CYCLES IN A RANDOM GRAPH
    COOPER, C
    FRIEZE, AM
    [J]. JOURNAL OF GRAPH THEORY, 1989, 13 (06) : 719 - 735
  • [23] Counting and packing Hamilton cycles in dense graphs and oriented graphs
    Ferber, Asaf
    Krivelevich, Michael
    Sudakov, Benny
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2017, 122 : 196 - 220
  • [24] ON THE SPECTRUM OF DENSE RANDOM GEOMETRIC GRAPHS
    Adhikari, Kartick
    Adler, Robert J.
    Bobrowski, Omer
    Rosenthal, Ron
    [J]. ANNALS OF APPLIED PROBABILITY, 2022, 32 (03): : 1734 - 1773
  • [25] Hamilton cycles in random lifts of directed graphs
    Chebolu, Prasad
    Frieze, Alan
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2008, 22 (02) : 520 - 540
  • [26] Rainbow Hamilton cycles in random regular graphs
    Janson, Svante
    Wormald, Nicholas
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2007, 30 (1-2) : 35 - 49
  • [27] Optimal covers with Hamilton cycles in random graphs
    Dan Hefetz
    Daniela Kühn
    John Lapinskas
    Deryk Osthus
    [J]. Combinatorica, 2014, 34 : 573 - 596
  • [28] Optimal covers with Hamilton cycles in random graphs
    Hefetz, Dan
    Kuehn, Daniela
    Lapinskas, John
    Osthus, Deryk
    [J]. COMBINATORICA, 2014, 34 (05) : 573 - 596
  • [29] Finding Hamilton cycles in random intersection graphs
    Rybarczyk, Katarzyna
    [J]. DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2018, 20 (01):
  • [30] ON THE NUMBER OF HAMILTON CYCLES IN SPARSE RANDOM GRAPHS
    Glebov, Roman
    Krivelevich, Michael
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (01) : 27 - 42