Adaptive NormalHedge for robust visual tracking

被引:35
|
作者
Zhang, Shengping [1 ]
Zhou, Huiyu [2 ]
Yao, Hongxun [1 ]
Zhang, Yanhao [1 ]
Wang, Kuanquan [1 ]
Zhang, Jun [3 ]
机构
[1] Harbin Inst Technol, Sch Comp Sci & Technol, Harbin, Peoples R China
[2] Queens Univ Belfast, Inst Elect Commun & Informat Technol, Belfast BT7 1NN, Antrim, North Ireland
[3] Hefei Univ Technol, Sch Comp Sci & Informat, Hefei, Peoples R China
基金
中国博士后科学基金; 英国工程与自然科学研究理事会; 高等学校博士学科点专项科研基金;
关键词
Visual tracking; Decision-theoretic online learning; Particle filter; Appearance changes; MULTIVIEW FEATURES; ONLINE; CONSTRAINTS; OBJECTS;
D O I
10.1016/j.sigpro.2014.08.027
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose a novel visual tracking framework, based on a decision-theoretic online learning algorithm namely NormalHedge. To make NormalHedge more robust against noise, we propose an adaptive NormalHedge algorithm, which exploits the historic information of each expert to perform more accurate prediction than the standard NormalHedge. Technically, we use a set of weighted experts to predict the state of the target to be tracked over time. The weight of each expert is online learned by pushing the cumulative regret of the learner towards that of the expert. Our simulation experiments demonstrate the effectiveness of the proposed adaptive NormalHedge, compared to the standard NormalHedge method. Furthermore, the experimental results of several challenging video sequences show that the proposed tracking method outperforms several state-of-the-art methods. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:132 / 142
页数:11
相关论文
共 50 条
  • [1] Robust Visual Tracking via Parallel Kernel Sparse Representation and NormalHedge
    Kuang, Jinjun
    Cheng, Cheng
    PROCEEDINGS OF THE 2ND INTERNATIONAL SYMPOSIUM ON COMPUTER, COMMUNICATION, CONTROL AND AUTOMATION, 2013, 68 : 89 - 93
  • [2] Adaptive Framework for Robust Visual Tracking
    Abdelpakey, Mohamed H.
    Shehata, Mohamed S.
    Mohamed, Mostafa M.
    Gong, Minglun
    IEEE ACCESS, 2018, 6 : 55273 - 55283
  • [3] Adaptive Part Mining for Robust Visual Tracking
    Ma, Yinchao
    He, Jianfeng
    Yang, Dawei
    Zhang, Tianzhu
    Wu, Feng
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (10) : 11443 - 11457
  • [4] Learning Adaptive Metric for Robust Visual Tracking
    Jiang, Nan
    Liu, Wenyu
    Wu, Ying
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (08) : 2288 - 2300
  • [5] Siamese Visual Tracking with Robust Adaptive Learning
    Zhang, Wancheng
    Chen, Zhi
    Liu, Peizhong
    Deng, Jianhua
    PROCEEDINGS OF 2019 IEEE 13TH INTERNATIONAL CONFERENCE ON ANTI-COUNTERFEITING, SECURITY, AND IDENTIFICATION (IEEE-ASID'2019), 2019, : 153 - 157
  • [6] Adaptive Keypoints Grouping for Robust Visual Tracking
    Lao, Mingjie
    Tang, Yazhe
    Kevin, Ang Zong Yao
    Lin, Feng
    PROCEEDINGS OF THE ION 2017 PACIFIC PNT MEETING, 2017, : 155 - 161
  • [7] Robust Visual Tracking via Adaptive Forest
    Cao, Song
    Xue, Wenfang
    PROCEEDINGS OF THE 2013 FOURTH INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL AND INFORMATION PROCESSING (ICICIP), 2013, : 30 - 34
  • [8] Robust Scale Adaptive Visual Tracking with Correlation Filters
    Li, Chunbao
    Yang, Bo
    APPLIED SCIENCES-BASEL, 2018, 8 (11):
  • [9] Adaptive Hamiltonian MCMC sampling for robust visual tracking
    Wang, Fasheng
    Li, Xucheng
    Lu, Mingyu
    MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (11) : 13087 - 13106
  • [10] An adaptive mixture color model for robust visual tracking
    Lehuger, A.
    Lechat, P.
    Perez, P.
    2006 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP 2006, PROCEEDINGS, 2006, : 573 - +