Adaptive NormalHedge for robust visual tracking

被引:35
|
作者
Zhang, Shengping [1 ]
Zhou, Huiyu [2 ]
Yao, Hongxun [1 ]
Zhang, Yanhao [1 ]
Wang, Kuanquan [1 ]
Zhang, Jun [3 ]
机构
[1] Harbin Inst Technol, Sch Comp Sci & Technol, Harbin, Peoples R China
[2] Queens Univ Belfast, Inst Elect Commun & Informat Technol, Belfast BT7 1NN, Antrim, North Ireland
[3] Hefei Univ Technol, Sch Comp Sci & Informat, Hefei, Peoples R China
基金
中国博士后科学基金; 英国工程与自然科学研究理事会; 高等学校博士学科点专项科研基金;
关键词
Visual tracking; Decision-theoretic online learning; Particle filter; Appearance changes; MULTIVIEW FEATURES; ONLINE; CONSTRAINTS; OBJECTS;
D O I
10.1016/j.sigpro.2014.08.027
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose a novel visual tracking framework, based on a decision-theoretic online learning algorithm namely NormalHedge. To make NormalHedge more robust against noise, we propose an adaptive NormalHedge algorithm, which exploits the historic information of each expert to perform more accurate prediction than the standard NormalHedge. Technically, we use a set of weighted experts to predict the state of the target to be tracked over time. The weight of each expert is online learned by pushing the cumulative regret of the learner towards that of the expert. Our simulation experiments demonstrate the effectiveness of the proposed adaptive NormalHedge, compared to the standard NormalHedge method. Furthermore, the experimental results of several challenging video sequences show that the proposed tracking method outperforms several state-of-the-art methods. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:132 / 142
页数:11
相关论文
共 50 条
  • [21] Robust adaptive learning with Siamese network architecture for visual tracking
    Zhang, Wancheng
    Du, Yongzhao
    Chen, Zhi
    Deng, Jianhua
    Liu, Peizhong
    VISUAL COMPUTER, 2021, 37 (05): : 881 - 894
  • [22] Spatial Adaptive Regularized Correlation Filter for Robust Visual Tracking
    Pu, Lei
    Feng, Xinxi
    Hou, Zhiqiang
    IEEE ACCESS, 2020, 8 (08) : 11342 - 11351
  • [23] Robust online visual tracking via stable and adaptive memories
    Guan, Hao
    An, Zhiyong
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 36 (06) : 5521 - 5531
  • [24] Visual tracking utilizing robust complementary learner and adaptive refiner
    Shi, Rui
    Wu, Guile
    Kang, Wenxiong
    Wang, Zhiyong
    Feng, David Dagan
    NEUROCOMPUTING, 2017, 260 : 367 - 377
  • [25] Audio Assisted Robust Visual Tracking With Adaptive Particle Filtering
    Kilic, Volkan
    Barnard, Mark
    Wang, Wenwu
    Kittler, Josef
    IEEE TRANSACTIONS ON MULTIMEDIA, 2015, 17 (02) : 186 - 200
  • [26] Robust visual tracking using self-adaptive strategy
    Chen, Zhi
    Liu, Peizhong
    Du, Yongzhao
    Luo, Yanmin
    Guo, Jing-Ming
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (1-2) : 141 - 162
  • [27] Robust Visual Tracking via Adaptive Kernelized Correlation Filter
    Wang, Bo
    Wang, Desheng
    Liao, Qingmin
    FOURTH INTERNATIONAL CONFERENCE ON WIRELESS AND OPTICAL COMMUNICATIONS, 2016, 9902
  • [28] Robust visual tracking using self-adaptive strategy
    Zhi Chen
    Peizhong Liu
    Yongzhao Du
    Yanmin Luo
    Jing-Ming Guo
    Multimedia Tools and Applications, 2020, 79 : 141 - 162
  • [29] Robust visual tracking via adaptive feature channel selection
    Ma, Sugang
    Zhang, Lei
    Hou, Zhiqiang
    Yang, Xiaobao
    Pu, Lei
    Zhao, Xiangmo
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (10) : 6951 - 6977
  • [30] Robust adaptive learning with Siamese network architecture for visual tracking
    Wancheng Zhang
    Yongzhao Du
    Zhi Chen
    Jianhua Deng
    Peizhong Liu
    The Visual Computer, 2021, 37 : 881 - 894