Adaptive NormalHedge for robust visual tracking

被引:35
|
作者
Zhang, Shengping [1 ]
Zhou, Huiyu [2 ]
Yao, Hongxun [1 ]
Zhang, Yanhao [1 ]
Wang, Kuanquan [1 ]
Zhang, Jun [3 ]
机构
[1] Harbin Inst Technol, Sch Comp Sci & Technol, Harbin, Peoples R China
[2] Queens Univ Belfast, Inst Elect Commun & Informat Technol, Belfast BT7 1NN, Antrim, North Ireland
[3] Hefei Univ Technol, Sch Comp Sci & Informat, Hefei, Peoples R China
基金
中国博士后科学基金; 英国工程与自然科学研究理事会; 高等学校博士学科点专项科研基金;
关键词
Visual tracking; Decision-theoretic online learning; Particle filter; Appearance changes; MULTIVIEW FEATURES; ONLINE; CONSTRAINTS; OBJECTS;
D O I
10.1016/j.sigpro.2014.08.027
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose a novel visual tracking framework, based on a decision-theoretic online learning algorithm namely NormalHedge. To make NormalHedge more robust against noise, we propose an adaptive NormalHedge algorithm, which exploits the historic information of each expert to perform more accurate prediction than the standard NormalHedge. Technically, we use a set of weighted experts to predict the state of the target to be tracked over time. The weight of each expert is online learned by pushing the cumulative regret of the learner towards that of the expert. Our simulation experiments demonstrate the effectiveness of the proposed adaptive NormalHedge, compared to the standard NormalHedge method. Furthermore, the experimental results of several challenging video sequences show that the proposed tracking method outperforms several state-of-the-art methods. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:132 / 142
页数:11
相关论文
共 50 条
  • [41] An Adaptive Padding Correlation Filter With Group Feature Fusion for Robust Visual Tracking
    Zihang Feng
    Liping Yan
    Yuanqing Xia
    Bo Xiao
    IEEE/CAA Journal of Automatica Sinica, 2022, 9 (10) : 1845 - 1860
  • [42] SCALE ROBUST ADAPTIVE FEATURE DENSITY APPROXIMATION FOR VISUAL OBJECT REPRESENTATION AND TRACKING
    Liu, C. Y.
    Yung, N. H. C.
    Fang, R. G.
    VISAPP 2009: PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS, VOL 2, 2009, : 535 - +
  • [43] Robust visual tracking using adaptive local appearance model for smart transportation
    Yang, Jiachen
    Xu, Ru
    Cui, Jing
    Ding, Zhiyong
    MULTIMEDIA TOOLS AND APPLICATIONS, 2016, 75 (24) : 17487 - 17500
  • [44] ROBUST VISUAL TRACKING VIA ADAPTIVE STRUCTURE-ENHANCED PARTICLE FILTER
    Song, Nan
    Li, Kezhi
    Chen, Wei
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 1578 - 1582
  • [45] Adaptive Channel Selection for Robust Visual Object Tracking with Discriminative Correlation Filters
    Tianyang Xu
    Zhenhua Feng
    Xiao-Jun Wu
    Josef Kittler
    International Journal of Computer Vision, 2021, 129 : 1359 - 1375
  • [46] Robust proposal distribution for adaptive visual tracking in a particle filtering frame work
    Komeili, Majid
    Armanfard, Narges
    Valizadeh, Morteza
    Kabir, Ehsanollah
    2009 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTATIONAL TOOLS FOR ENGINEERING APPLICATIONS, 2009, : 90 - 95
  • [47] Robust Visual Tracking Based on Adaptive Convolutional Features and Offline Siamese Tracker
    Zhang, Ximing
    Wang, Mingang
    SENSORS, 2018, 18 (07)
  • [48] Classifier Adaptive Fusion: Deep Learning for Robust Outdoor Vehicle Visual Tracking
    Xin, Jing
    Du, Xing
    Shi, Yaqian
    IEEE ACCESS, 2019, 7 : 118519 - 118529
  • [49] Robust part-based visual tracking via adaptive collaborative modelling
    Kong, Jun
    Wang, Benxuan
    Jiang, Min
    IET IMAGE PROCESSING, 2019, 13 (10) : 1648 - 1657
  • [50] TOWARD ROBUST ONLINE ADAPTIVE VISUAL TRACKING VIA PYRAMIDAL FEATURES EXTRACTION
    Bai, Shuai
    Dong, Yuan
    Xu, Ting-Bing
    Bai, Hongliang
    2019 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW), 2019, : 561 - 566