Adaptive NormalHedge for robust visual tracking

被引:35
|
作者
Zhang, Shengping [1 ]
Zhou, Huiyu [2 ]
Yao, Hongxun [1 ]
Zhang, Yanhao [1 ]
Wang, Kuanquan [1 ]
Zhang, Jun [3 ]
机构
[1] Harbin Inst Technol, Sch Comp Sci & Technol, Harbin, Peoples R China
[2] Queens Univ Belfast, Inst Elect Commun & Informat Technol, Belfast BT7 1NN, Antrim, North Ireland
[3] Hefei Univ Technol, Sch Comp Sci & Informat, Hefei, Peoples R China
基金
中国博士后科学基金; 英国工程与自然科学研究理事会; 高等学校博士学科点专项科研基金;
关键词
Visual tracking; Decision-theoretic online learning; Particle filter; Appearance changes; MULTIVIEW FEATURES; ONLINE; CONSTRAINTS; OBJECTS;
D O I
10.1016/j.sigpro.2014.08.027
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose a novel visual tracking framework, based on a decision-theoretic online learning algorithm namely NormalHedge. To make NormalHedge more robust against noise, we propose an adaptive NormalHedge algorithm, which exploits the historic information of each expert to perform more accurate prediction than the standard NormalHedge. Technically, we use a set of weighted experts to predict the state of the target to be tracked over time. The weight of each expert is online learned by pushing the cumulative regret of the learner towards that of the expert. Our simulation experiments demonstrate the effectiveness of the proposed adaptive NormalHedge, compared to the standard NormalHedge method. Furthermore, the experimental results of several challenging video sequences show that the proposed tracking method outperforms several state-of-the-art methods. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:132 / 142
页数:11
相关论文
共 50 条
  • [31] Robust visual tracking with adaptive initial configuration and likelihood landscape analysis
    Kim, Guisik
    Kwon, Junseok
    IET COMPUTER VISION, 2019, 13 (01) : 1 - 7
  • [32] Deep learning assisted robust visual tracking with adaptive particle filtering
    Qian, Xiaoyan
    Han, Lei
    Wang, Yuedong
    Ding, Meng
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2018, 60 : 183 - 192
  • [33] Learning Rotation Adaptive Correlation Filters in Robust Visual Object Tracking
    Rout, Litu
    Raju, Priya Mariam
    Mishra, Deepak
    Gorthi, Rama Krishna Sai Subrahmanyam
    COMPUTER VISION - ACCV 2018, PT II, 2019, 11362 : 646 - 661
  • [34] Robust Auxiliary Particle Filter with an Adaptive Appearance Model for Visual Tracking
    Kim, Du Yong
    Yang, Lawa
    Leon, Moongu
    Shin, Vladimir
    COMPUTER VISION - ACCV 2010, PT III, 2011, 6494 : 718 - 731
  • [35] Adaptive multi-branch correlation filters for robust visual tracking
    Li, Xiaojing
    Huang, Lei
    Wei, Zhiqiang
    Nie, Jie
    Chen, Zhineng
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (07): : 2889 - 2904
  • [36] Robust Visual Tracking Based on Adaptive Extraction and Enhancement of Correlation Filter
    Wang, Wuwei
    Zhang, Ke
    Lv, Meibo
    IEEE ACCESS, 2019, 7 : 3534 - 3546
  • [37] Adaptive Multiple Cues Integration for Robust Outdoor Vehicle Visual Tracking
    Xin Jing
    Liu Xiao-dan
    Ran Bao-jing
    Liu Ding
    2015 34TH CHINESE CONTROL CONFERENCE (CCC), 2015, : 4913 - 4918
  • [38] Adaptive multi-branch correlation filters for robust visual tracking
    Xiaojing Li
    Lei Huang
    Zhiqiang Wei
    Jie Nie
    Zhineng Chen
    Neural Computing and Applications, 2021, 33 : 2889 - 2904
  • [39] A new robust visual tracking algorithm based on Transfer Adaptive Boosting
    Wu, Songtao
    Zhu, Yuesheng
    Zhang, Qing
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2012, 35 (17) : 2133 - 2140
  • [40] An Adaptive Padding Correlation Filter With Group Feature Fusion for Robust Visual Tracking
    Feng, Zihang
    Yan, Liping
    Xia, Yuanqing
    Xiao, Bo
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2022, 9 (10) : 1845 - 1860