Siamese Visual Tracking with Robust Adaptive Learning

被引:0
|
作者
Zhang, Wancheng [1 ]
Chen, Zhi [1 ]
Liu, Peizhong [2 ,3 ]
Deng, Jianhua [2 ]
机构
[1] Huaqiao Univ, Coll Engn, Quanzhou 362000, Peoples R China
[2] Quanzhou Zhongfang Hongye Informat Technol Co LTD, Quanzhou 362000, Peoples R China
[3] Fujian Prov Big Data Res Inst Intelligent Mfg, Quanzhou 362000, Peoples R China
关键词
visual tracking; siamese network; daptive feature fusion; model update;
D O I
10.1109/icasid.2019.8925141
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Correlation filters and deep learning methods are the two mainly directions in the research of visual tracking. However, these trackers do not balance accuracy and speed very well at the same time. The application of the Siamese networks brings great improvement in accuracy and speed, and an increasing number of researchers are paying attention to this aspect. In the paper, based on the Siamese networks model, we propose a robust adaptive learning visual tracking algorithm. HOG features, CN features and deep convolution features are extracted from the template frame and search region frame respectively, and we analyze the merits of each feature and perform feature adaptive fusion to improve the validity of feature representation. Then, we update the two branch models with two learning change factors and realize a more similar match to locate the target. Besides, we propose a model update strategy that employs the average peak-to-correlation energy (APCE) to determinate whether to update the learning change factors to improve the accuracy of tracking model and reduce the tracking drift in the case of tracking failure, deformation or background blur etc. Extensive experiments on the benchmark datasets (OTB-50, OTB-100) demonstrate that our visual tracking algorithm performs better than several state-of-the-art trackers for accuracy and robustness.
引用
收藏
页码:153 / 157
页数:5
相关论文
共 50 条
  • [1] Robust adaptive learning with Siamese network architecture for visual tracking
    Wancheng Zhang
    Yongzhao Du
    Zhi Chen
    Jianhua Deng
    Peizhong Liu
    The Visual Computer, 2021, 37 : 881 - 894
  • [2] Robust adaptive learning with Siamese network architecture for visual tracking
    Zhang, Wancheng
    Du, Yongzhao
    Chen, Zhi
    Deng, Jianhua
    Liu, Peizhong
    VISUAL COMPUTER, 2021, 37 (05): : 881 - 894
  • [3] Discriminative and Robust Online Learning for Siamese Visual Tracking
    Zhou, Jinghao
    Wang, Peng
    Sun, Haoyang
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 13017 - 13024
  • [4] Learning adaptive updating siamese network for visual tracking
    Zhou, Yifei
    Li, Jing
    Du, Bo
    Chang, Jun
    Ding, Zhiquan
    Qin, Tianqi
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (19) : 29849 - 29873
  • [5] Learning adaptive updating siamese network for visual tracking
    Yifei Zhou
    Jing Li
    Bo Du
    Jun Chang
    Zhiquan Ding
    Tianqi Qin
    Multimedia Tools and Applications, 2021, 80 : 29849 - 29873
  • [6] Siamada: visual tracking based on Siamese adaptive learning network
    Xin Lu
    Fusheng Li
    Wanqi Yang
    Neural Computing and Applications, 2024, 36 : 7639 - 7656
  • [7] Siamada: visual tracking based on Siamese adaptive learning network
    Lu, Xin
    Li, Fusheng
    Yang, Wanqi
    NEURAL COMPUTING & APPLICATIONS, 2024, 36 (14): : 7639 - 7656
  • [8] Deep Siamese Cross-Residual Learning for Robust Visual Tracking
    Wu, Fan
    Xu, Tingfa
    Guo, Jie
    Huang, Bo
    Xu, Chang
    Wang, Jihui
    Li, Xiangmin
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (20): : 15216 - 15227
  • [9] Learning Adaptive Metric for Robust Visual Tracking
    Jiang, Nan
    Liu, Wenyu
    Wu, Ying
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (08) : 2288 - 2300
  • [10] Robust Visual Tracking Based on Adaptive Convolutional Features and Offline Siamese Tracker
    Zhang, Ximing
    Wang, Mingang
    SENSORS, 2018, 18 (07)